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Abstract— Mechatronic systems have increasingly high per-
formance requirements for motion control. The low-frequency
contribution of the flexible dynamics, i.e. the compliance, should
be compensated for by means of snap feedforward to achieve
high accuracy. Position-dependent compliance, which often
occurs in motion systems, requires the snap feedforward param-
eter to be modeled as a function of position. Position-dependent
compliance is compensated for by using a Gaussian process
to model the snap feedforward parameter as a continuous
function of position. A simulation of a flexible beam shows that
a significant performance increase is achieved when using the
Gaussian process snap feedforward parameter to compensate
for position-dependent compliance.

I. INTRODUCTION

Feedforward control is fundamental for the tracking per-
formance of motion systems, including wafer stages [1] and
printing systems [2]. Traditionally, feedforward control is
based on manual tuning. Recently, due to the increase of
computational power, the focus has shifted towards learning
feedforward from data [3]. For example, Iterative Learning
Control (ILC) achieves high tracking performance by learn-
ing feedforward in a trial-to-trial fashion [4]. In contrast,
fast motion is realised by designing lightweight systems, in-
troducing dominant flexible dynamics affecting the tracking
performance [5]. In addition, the combination of moving
bodies and flexible dynamics introduce position-dependent
behavior [6], [7].

Classical Linear Time-Invariant (LTI) acceleration feedfor-
ward compensates for the rigid-body dynamics of a system.
In this case, the feedforward signal is scaled to the acceler-
ation of the reference trajectory [8]. However, a well-tuned
acceleration feedforward does not compensate for flexible
dynamics [9].

Flexible dynamics lead to a situation where the com-
pliance, i.e. the low-frequency contribution of the flexible
dynamics, is compensated for by means of snap feedforward
[9]. Snap feedforward uses the scaled fourth derivative
of the reference. The snap feedforward parameter can be
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tuned online and improves performance for both Single-
Input, Single-Output (SISO) systems [9] and multiple-input,
multiple-output systems [10].

Many systems contain position-dependent behavior that
introduces position-dependent compliance [11]-[13], which
necessitates the need for a position-dependent compensation
thereof. For this purpose, the snap feedforward parameter
can be determined in a grid and estimated with, e.g., spline
or linear interpolation. However, these interpolations have
approximation errors since the dependency between position
and snap feedforward parameters is generally unknown.

High motion control performance for systems with
position-dependent dynamics can furthermore be achieved
through the use of Linear Parameter Varying (LPV) control
of the system. First, LTI dynamics can be scheduled accord-
ing to the current configuration of the LPV system, resulting
in high control performance for e.g. wafer stages [1], [14]
or xy-positioning tables [15]. Second, ILC can be extended
for LPV systems, which results in high performance through
learning [16]. LPV model-free approaches are investigated in
[17], directly learning LPV controllers from data, but are at
present not competitive with model-based designs. Therefore,
LPV control requires LPV modeling, which is often very
challenging and the high modeling cost and complexity are
usually not justified for industrial control applications.

Although feedforward design has improved significantly
with respect to traditional acceleration feedforward, a snap
feedforward with systematic tuning for position-dependent
compliance, capable of estimation at any arbitrary position,
is currently lacking. This paper models the snap feedforward
parameter as a continuous function of position by means of a
Gaussian Process (GP) [18], [19], which allows for the com-
pensation of position-dependent compliance without an LPV
model. In addition, a GP is non-parametric and therefore does
not require an assumption on the parametric form between
the position and the snap feedforward parameter. In this
paper, the feedforward parameters of a system are learned
in a trial-to-trial fashion using ILC with Basis Functions
(ILCBF) [20]. The contributions include:

C1 a framework to model the snap feedforward parameter

as a function of position with a GP (Section III),
C2 ILCBF to automatically learn the snap feedforward pa-
rameter, which is directly used in the GP (Section IV),
C3 application to a benchmark example, confirming the
capabilities of the framework (Section V).

Notation: Systems are SISO and discrete-time, unless
stated otherwise. Continuous time systems are transformed
in their discrete-time counterpart using finite difference ap-
proximation. The trial number is indicated with the index



7. Signals are assumed to be of length N. The weighted
2-norm of a vector z € RY is denoted as |z|w :=
\ﬂxTWa:), where W € RM*N is a weighting matrix.
Matrix A € RV*N is positive (semi-)definite if and only
if 7 Az > 0, Vx £0 € RY and is denoted as A = 0.

II. PROBLEM FORMULATION

In this section, the problem for determining a feedforward
controller for position-dependent flexible dynamics is formu-
lated. First, a general description for system with position-
dependent flexible dynamics is given. Second, feedforward
design, including acceleration and snap feedforward, is in-
vestigated. Finally, the problem addressed in this paper is
defined.

A. Considered Class of Position-Dependent Systems

The considered class of systems with position-dependent
flexible modes are encompassed using spatially distributed
LTT systems [21], [22, Section 3.2]

y(k) = G(p,qa "ul(k),
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with scheduling variable p € D, where D is the parameter
space and ¢ the shift operator, i.e., ¢ "s(k) = s(k — 7).
Note that p is not limited to the position, but can be used
as different scheduling variable, see e.g. [23, Fig. 7]. The
mode shapes are represented by D;(p) = ¢;(p)b (p) € R
and ngp, ny € N, are the amount of rigid-body and flexible
modes. The systems G; rp and G; ; are described as [21]
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with T, the sampling time and (;,w; € Ry the mode
damping and mode frequency, respectively. A benchmark
example is the flexible beam with varying performance
location, as seen in Fig. 1.

For a fixed value of p, the system G(p,q~ ') is an LTI
system, which is called the frozen dynamics of the system.
Several bode magnitude diagrams evaluated at different val-
ues of p can be seen in Fig. 2

B. Feedforward Design and the Limitation of Acceleration
Feedforward

The main goal of feedforward is to minimize the error
e, given a reference signal r, see Fig. 3. Consider the
continuous-time LTI position-independent system equivalent
to (1),
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Fig. 1.
representing an H-type gantry commonly used in e.g. semiconductor back-
end machines or large-format printing systems seen in the top right. The
first mode shape of the flexible beam is displayed, with two actuators a1
and a2 and the output y. The performance location can vary, indicated by
the scheduling variable p.

Benchmark system for position-dependent snap feedforward,
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Fig. 2. Top: bode magnitude diagram of the frozen transfer function

G(p,q~1) evaluated at p = 0 mm (—), p = 35 mm (- -) and p = 250
mm (- -). Bottom: the separation of rigid-body (—) and flexible modes at
p =35 mm (- -) and p = 250 mm (- -) for the flexible beam in Fig. 1.

where s is the continuous-time indeterminate. The objective
of feedforward, for the plant Gy, is to minimize

e(s) = S(s)r(s) — S(s)Go(s)F(s)r(s),

where

S(s) = (I + Go(s)C(s)) ™"

Typical feedforward, for systems with rigid-body modes
which are not suspended, consists of acceleration feedfor-
ward,

F.(s) = ms?, %)

with /m an estimate of the mass of the system. Consider
the open loop tracking error when assuming the system G
has only one translational rigid-body mode and well-tuned
acceleration feedforward, i.c., /%" b/ = L in (3) and
m=m,

eo(s) =7(s) — Go(s)Fa(s)r(s)

S ci bl 2 ®)
Fms r(s).
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Fig. 3. Control structure considered in this paper, consisting of feedforward
controller F', feedback controller C' and the system G(p).

For low frequencies, the relation between the error in (5) and
the acceleration of the reference is

. eo(s) | el cibiT
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i=1

which shows that the open loop servo error for low frequen-
cies remains when using acceleration feedforward due to the
contribution of the compliance.

C. Snap Feedforward

Flexible systems necessitate a compensation of the flexible
dynamics during constant acceleration, as seen in (6), which
is explicitly compensated for by means of snap feedforward.
For this purpose, the acceleration feedforward in (4) is
extended with additional snap feedforward ds*, leading to

Fy(s) = ms® + 85", (7

with § the snap feedforward parameter. The open loop servo
error in (5) is equal to zero by designing ¢ as,
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Again assuming one translational rigid body mode, the low-
frequency contribution of this controller is equal to
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Hence, the feedforward controller in (7) results in
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Note that for position-independent systems, the value of ¢ is
a real constant and can be learned or tuned online.

D. Problem Definition

Position-independent snap feedforward does not com-
pensate for position-dependent compliance of the system
G(p,q~1). LPV modeling of the position-dependent com-
pliance is often not feasible and a parametric form between
the position and the snap feedforward parameter, that is used
in interpolation, is generally unknown.

Hence, the aim of this paper is modeling the snap feedfor-
ward parameter ¢§ in (7) as a continuous function of position,
i.e. d(p), such that it compensates for position-dependent
compliance, without an LPV model or parametric form.

III. POSITION-DEPENDENT SNAP FEEDFORWARD USING
GAUSSIAN PROCESSES

In this section, the snap feedforward parameter is modeled
as a function of position, i.e., 4(p), such that it can compen-
sate for position-dependent compliance, hence constituting
contribution C1. First, GPs are investigated, including the
covariance function, the prior distribution and the posterior
distribution. Finally, a method to model the snap feedforward
parameter as a function of position by means of a GP is
shown.

A. Gaussian Processes

A GP is defined as a collection of random variables f(p),
indexed by p € RP, such that the joint distribution of any
finite subset of random variables is multivariate Gaussian. A
GP is written as

f(p) ~ GP(m(p),k(p, ")), 9)

and is completely determined by the covariance function
k(p, p') and the mean function m(p),

k(p,p") =E[(f(p) —m(p)) (f (p')
m(p) = E[f(p)].

The mean function m can be interpreted as the mean at any
input point and the covariance function £ as the similarity
between values of f(p) on different inputs p. The covariance
function is discussed in Section III-B and the mean function
is assumed to be zero. Note that this is not necessary, see [18,
Section 2.7]. Training data for a GP are defined by sampling
the function f on inputs and measuring the (noisy) training
outputs y

“m

y=f(p) +e

11
where € ~ N (0,021, an

and o2 is the variance of the noise acting on the output.

B. Covariance Function

The covariance function or kernel specifies the covariance
between the inputs p and p’. An example is the squared expo-
nential or Radial Basis Function (RBF) covariance function,
L) to),

krer (p,p') = ofe” (12)

which shows that the entries for the covariance function are
low when the inputs are far away from each other and close
to ch% when they are close to each other. In addition, the
0'}% and ¢ are the so-called hyperparameters, respectively the
signal variance and length scale, that are optimized based on
data using marginal likelihood optimization [18, Chapter 5].

C. Prior and Posterior Distribution

In a GP, function predictions are made using the posterior
distribution, which is the prior distribution conditioned on
function observations. Consider a finite set of test inputs
P, € R™*P the prior distribution of a GP is formulated as

f(P) ~N(0,K (P, P)), (13)
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Fig. 4. Left: two samples (---) drawn from the prior, the prior mean
(—) and a function to regress (- -). Right: two samples (-*-) drawn from
the posterior, the posterior mean (—), a function to regress (- -) and the
training data (A).

that is, evaluate the covariance function at P, and take
the associated Gaussian distribution. Several samples drawn
from this distribution can be seen in Fig. 4. The test outputs
f (Py) are jointly distributed with the training outputs as

i)~ (0| R KEE)) "

with kernel matrices K(P,P) € R"*", K(P,,P,) €
R™*" and K(P,P,) = K(P,,P)T € R™ ", with n
the amount of training outputs. The parameter o2 is an
approximation of the noise acting on the output o2, seen in
(11), and an additional hyperparameter. The training inputs
P € R™ P and test inputs P, can be any single point or

vector of positions, i.e.,

)

P* - [,0*,1 p*,2 ]T
P=I[p1 p2 - pn

Px,n.

5)
}T

Using the joint distribution in (14) and Bayes’ rule, estima-
tions are made using the posterior distribution

(P [ [P, Pyl ~ N (f (P.),cov (f (Py))),  (16)
where
F(P) = E[f(P)] =K, (K(P,P)+02) 'y, 7

cov (f (P)) = Ko — K (K(P,P) +02) ' K.
The prior and posterior enable the user to train a GP with
function observations and estimate function values.
D. Gaussian Processes for Snap Feedforward

In this section, the snap feedforward parameter is modeled
as a continuous function of position to compensate for
position-dependent compliance by means of a GP, i.e.,

5(p) = f(p) ~ GP(m(p), k(p, p")).
The training data for the GP, seen in (11), is defined as
y= [51

where §; is determined using the method in Section IV. The
training inputs in (15), for systems with position-dependent
flexible modes, are equal to the scheduling variables p where
the snap feedforward parameters J; are determined.

(18)

5, e R, (19)

Snap feedforward parameters can be estimated on posi-
tions p, using

3(ps) = K(P,p,) " (K(P,P)+02) "'y, (0)

with y from (19). Using (20), snap feedforward parameters
can be estimated on unknown positions using the training
data, such that position-dependent compliance can be com-
pensated for.

IV. LEARNING FROZEN PARAMETERS §(p) VIA BASIS
FUNCTIONS

In this section, feedforward parameters are learned in a
trial-to-trial fashion, which will serve as training data for the
GP, leading to contribution C2. Here, ILCBF is used to learn
the parameters, but the framework can directly be extended
to other feedforward parameter tuning approaches.

ILCBF parametrizes the feedforward signal and learns
the feedforward parameters in a trial-to-trial fashion. The
optimization criterion in ILCBF is specified as [2]
V(0541) = llej 1 (B) 3y, + 11 F5+1 (R 3y + (1 £541. (k) — fj(k)”%/VAé ,
@n
with weighting matrices W, > 0 and Wy, Way = 0 and
0; € R™ the feedforward parameters. The error in trial j+1
can be written as

ej+1(k) = S(g " r(k) — S(g"HGo(g ") fiz1(k)

= ¢;(k) = S(a™)Gola™ ) (F11(k) = [;(k)),
(22)

where now, G| is for instance a nominal model of a position-
dependent system. The feedforward force is parameterized
in terms of the feedforward parameters §;, ie., f;(k) =
F(0;)r(k), with F(0;) € RV*N the convolution matrix
of a linear system with parameters 6;. ILCBF updates the
feedforward parameters in a trial-to-trial fashion using

0741 = arg gjlfll V(0j+1). (23)

When choosing F'(6;) linearly in 6;, the optimization crite-
rion in (21) becomes quadratic in 6;,1. Hence, an analytic
solution to (23) exists [24].

Given the basis function matrix (k) =
0/00;F(0;)r(k) € RN*"o and the weighting matrices W,
W and Way, the analytic solution to (23) is

0j+1 = Le;j + Q0;,
L=R"'(¥'GjS"W.),
Q=R 1'UT (G)STW.GoS + Way) ¥,
R= (V" (Gy STW.GoS + Wy + Way) ¥),

(24)

where (¢~!) and (k) have been left out for brevity. The
parameter update in (24) leads to monotonic convergence of
I £;(k)||, provided matrices We, Wy and Wa are selected
properly [2]. Robustness, with respect to model mismatch
due to the position-dependent dynamics, can be enforced by
increasing Wy. Now, (24) can be used in combination with
the error in trial j to compute a new set of feedforward
parameters ¢4, for a fixed value of p.
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Fig. 5. Left: error 2-norm for acceleration feedforward ( ) and

acceleration with snap feedforward ( - £} ) when applying ILCBF. Right:
acceleration ( -A-) and snap (- €)- ) feedforward parameters when apply-
ing ILCBF. The scheduling variable p is equal to 250 mm.

V. FLEXIBLE BEAM EXAMPLE

In this section, the GP snap framework is applied on a
simulation of an flexible beam, hence constituting contribu-
tion C3. First, the example setup is discussed, followed by
the application of both ILCBF and GP snap feedforward.
Finally, the results and comparison to position-independent
snap feedforward are given.

A. Example System

The unsupported (free-free) flexible beam in Fig. 1 is
considered, having dominant flexible dynamics. The beam
has a total length of 500 mm. The flexible beam consists of
two actuators and a sensor with variable position. To assure
the system is SISO, the two actuators have the same input,
ie., ay = as = u/2. Varying performance location, e.g.,
as is occurring in wafer exposure [7] or flat-bed printing
[16], can be emulated by changing the sensor position p.
The translational rigid body and two flexible modes are
considered, ie., ngg = 1 and ny = 2. The feedback
controller C' is taken fixed and is a lead filter and a gain
with a bandwidth of 4 Hz. Due to the inherent dynamics of
the flexible beam and a changing performance location, it is
a suitable example for position-dependent snap feedforward.

B. Learning Frozen Parameters on the Flexible Beam

ILCBF as specified in Section IV has been implemented
on the flexible beam to iteratively learn the feedforward
parameters, including the snap feedforward parameter. A
fourth-order reference as designed in [25] has been used.
The model G for ILCBF for all positions, see e.g. (24), is a
model of the flexible beam with sensor position p = 250 mm,
which is seen in Fig. 2. Fig. 5 shows that the error 2-norm
can be significantly reduced by learning the feedforward
parameters in a trial-to-trial fashion. It furthermore shows
how additional snap feedforward can improve performance
compared with traditional acceleration feedforward.
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Fig. 6. GP regression of the snap feedforward parameter of the flexible

beam with the posterior mean (—), the posterior mean +2¢ (0) and the
training data ().

C. GP Snap Feedforward Parameter

The snap feedforward parameter is modeled as a function
of position using a GP. First, the training inputs in (15) are
defined as five equispaced positions,

P=[10 130 250 370 490] . (25)

On the positions P, ILCBF has been performed and the
resulting snap feedforward parameter is the training data as
in (19). The RBF covariance function in (12) is used, with
hyperparameters optimized based on marginal likelihood.
For visualization purposes, the test positions P, are defined
as an equispaced dense grid covering the beam. The GP
regression in Fig. 6 shows the snap feedforward parameter
varies when changing the scheduling variable p, which is
further supported by looking at Fig. 2.

D. Results

To evaluate the performance of the framework, GP snap
feedforward is compared with position-independent snap
feedforward. Position-independent snap feedforward uses
the same snap feedforward parameters for all values of
p, whereas the GP snap feedforward estimates the snap
feedforward parameter using (20). The error 2-norm for
both GP snap and position-independent snap feedforward for
several test positions can be seen in Fig. 7. Fig. 7 shows that
GP snap feedforward outperforms the position-independent
feedforward significantly when the sensor position moves
outside the center position. At the edges of the flexible beam,
roughly a performance increase of factor two in terms of
the error 2-norm is observed. Near the center of the beam,
performance is equal, which is expected since the position-
independent snap feedforward uses the snap feedforward
parameter determined at the center position. The achievable
performance gain is further supported by looking at the time
domain error for p = 30 mm in Fig. 8.

VI. CONCLUSIONS

This work describes a method to use a GP to model the
snap feedforward parameter as a function of position. A GP
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and acceleration feedforward (@). The GP feedforward has comparable
performance for all positions, while both the position-independent snap and
acceleration feedforward have higher error 2-norms for certain positions.
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Fig. 8. Time domain error for GP snap feedforward (—) and position-
independent snap feedforward (- -) for the scheduling variable p = 30 mm.
The maximum error for GP snap feedforward is roughly 3 times lower than
the maximum error for position-independent snap feedforward.

works especially well since it is non-parametric and therefore
does not assume a parametric form between the position
and the snap feedforward parameter, which is typically
unknown. The framework is applied on a flexible beam,
which shows the dependency of the snap feedforward param-
eter on position. GP snap feedforward shows a significant
performance increase compared with position-independent
snap feedforward.

Future research on this topic is directed at integrating
and testing the framework for MIMO systems and adding
other position-dependent feedforward parameters or effects.
Furthermore, a method to automatically and optimally de-
termine the training inputs in (25) is investigated. Lastly,
experimental validation confirming the practical applicability
of the framework is a subject of ongoing research.
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