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Abstract: Feedforward control is essential to achieving good tracking performance in position-
ing systems. The aim of this paper is to develop an identification strategy for inverse models of
systems with nonlinear dynamics of unknown structure using input-output data, which can be
used to generate feedforward signals for a-priori unknown tasks. To this end, inverse systems
are regarded as noncausal nonlinear finite impulse response (NFIR) systems, and modeled as a
Gaussian Process with a stationary kernel function that imposes properties such as smoothness.
The approach is validated experimentally on a consumer printer with friction and shown to lead
to improved tracking performance with respect to linear feedforward.
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1. INTRODUCTION

System identification in the presence of nonlinear dynam-
ics of unknown structure is a challenging subject, because
of the wide range of possible model descriptions that need
to be considered (Sjöberg et al., 1995). For feedforward
control, models of inverse systems are of particular in-
terest, since the filtering of some reference by the inverse
system yields the required control effort for that task. For
a system G, an inverse model G−1 can be obtained by
either (i) identification of G and subsequent inversion, or
(ii) direct identification of G−1. It is shown in Blanken and
Oomen (2020) that the latter poses an advantage over the
former, since properties such as stability, smoothness and
finite preview or history of G−1 can be enforced directly
on the model.

If the nonlinear structure of the inverse system is known
to be representable by, e.g., a set of some polynomial basis
functions, the model coefficients can be learned perfectly
in an iterative fashion, see Boeren et al. (2015); Van De
Wijdeven and Bosgra (2010). Such an approach allows for
the generation of feedforward signals for any task, because
any reference can be filtered through this inverse model to
obtain the required control effort.

Identification methods for inverse systems that rely on
user-specified parametrization of the system through a lim-
ited number of nonlinear basis functions are not applicable
when the nonlinear structure of a system is unknown. In
such case, the structural model errors of the feedforward
controller can lead to performance degradation (Schoukens
and Ljung, 2019).
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has received funding from the ECSEL Joint Undertaking under
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For a certain class of basis functions, namely, the eigen-
functions of universal kernels, structural model errors of
a modeled function f : Rn → R on a compact subset
X ⊂ Rn vanish as the number of basis functions grows
to infinity (Micchelli et al., 2006). These kernels impose
properties such as smoothness on the model in order to
deal with the bias-variance trade-off. In Gaussian Process
(GP) regression, these kernels pose a Gaussian prior on f ,
and predictions are made by extrapolating from measure-
ments using Bayes’ rule (Rasmussen and Williams, 2006),
see Figure 1.

GPs have been shown in literature to be applicable to mod-
eling dynamic systems with unknown nonlinear dynamics.
Such modeling methods are widely available for Euler-
Lagrange systems (Beckers et al., 2019; Nguyen-Tuong
et al., 2008, 2009), single-input systems that offer full
state measurements (Deisenroth and Rasmussen, 2011),
and causal systems (Pillonetto et al., 2014).

Although these methods are capable of modeling dynamics
with unknown nonlinear structure, the requirement of full
state measurements is overly restrictive in some cases,
and in the presence of nonlinear dynamics of unknown
structure, the inclusion of a state observer is nontrivial.
Moreover, for motion systems G, the inverse G−1 is always
noncausal, and for reasons that will become clear in
Section 3.3, nonlinear kernel-based identification methods
of G may not be applicable to identification of G−1.

The aim of this paper is to develop a novel technique for
grey-box modeling of noncausal nonlinear systems with
unknown structure based on input-output data. In partic-
ular, inverse systems G−1 are viewed as noncausal nonlin-
ear finite impulse response (NFIR) systems and modeled
as a Gaussian Process, in order to generate feedforward
signals for a range of tasks that may be unknown a-priori.
Consequently, the method yields a model of G−1 directly,
in contrast to stable inversion-based approaches that rely
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) modeled as a Gaussian
Process. The posterior distribution, using a Matèrn3/2
kernel, has an accurate mean (
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) close to observa-
tions (×), and high standard deviation (
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) far from
observations.
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Fig. 2. Motion control architecture.

on inversion of G (Devasia, 1997; Pavlov and Pettersen,
2008). This paper consists of two main contributions:

C1: A procedure for GP-based feedforward control of sys-
tems with unknown nonlinear dynamics is proposed
and described from a design perspective.

C2: The method is validated experimentally on a printer
with friction to show its improved tracking perfor-
mance with respect to linear feedforward control.

This paper is structured as follows. First, the problem
description is given in Section 2. Subsequently, Gaussian
Processes regression for NFIR systems is explained and
design considerations for kernel selection and experimental
design are given in Section 3. Afterwards, in Section 4
the method is applied to an experimental setup. Finally,
Section 5 presents the conclusions and proposes some
directions for future work.

2. PROBLEM DESCRIPTION

In this section, the problem description is given. First,
the control architecture and goal are described. Next, an
assumption on the structure of G−1 is explained and it is
shown how this setting enables task flexibility.

2.1 Setting and goal

Let G(q) denote a discrete-time, nonlinear SISO system,
where q is the forward-shift operator such that qτa(t) :=
a(t+τ), τ ∈ Z. The closed-loop motion control architecture
in Figure 2 is considered, where r(t) denotes a predefined
reference to be tracked at time t ∈ Z, y(t) is the system
output, e(t) is the tracking error and ε(t) ∼ N (0, σ2

n) is an
i.i.d. disturbance.

It is assumed that a stabilizing feedback controller C(q) is
available, as well as some prior feedforward controller F (q).
Perfect tracking is achieved for F (q) = G−1(q), since then

e(t) = r(t)− y(t)

= r(t)−G(q)u(t)

= r(t)−G(q)G−1(q)r(t)
= 0.

(1)

The goal in this paper is to obtain F̂ (q) ≈ G−1(q) from
data such that the 2-norm of the tracking error (∥e∥2) is
reduced. Moreover, task flexibility must be allowed.

Definition 1. (Task flexibility). Task flexibility refers to

the notion that the designed feedforward controller F̂ (q)
must achieve improved tracking performance for a range
of different tasks that may not all be known prior to the
generation of F̂ (q).

The next section explains an additional assumption on the
structure on G−1(q), before the problem formulation is
formalized in Section 2.3.

2.2 Noncausal nonlinear finite impulse response systems

In order to find a feedforward controller F̂ (q) ≈ G−1(q),
a structure on G−1(q) is imposed first. Note that linear
sampled systems P (z) of continuous-time systems P (s)
often contain zeros outside the unit disc, depending on the
sample time and the relative degree of P (s), see Åström
et al. (1984). Consequently, P−1(z) may contain poles
outside the unit disc. Whereas systems with poles outside
the unit disc are typically viewed as causal and unstable,
they may also be viewed as noncausal and stable (Blanken
and Oomen, 2020).

Theorem 1. (Non-causal exact inversion). Let system
P (z) be given such that P−1(z) ∈ RL2(T), i.e., the set of
real, rational, discrete-time systems without poles on the
unit disc T := {z ∈ C : |z| = 1}. Then, there exists a
non-causal sequence θ ∈ ℓ1(Z) such that, for any signal
r(t) ∈ ℓ2(Z), the signal

u(t) =

∞∑
τ=−∞

θτr(t− τ) ∈ ℓ2(Z) (2)

leads to exact inversion y(t) = P (q)u(t) = r(t).

In the absence of infinite preview or history, a non-causal
FIR system parametrization may be used as a finite-
dimensional approximation of (2):

u(t) ≈
nc∑

τ=−nac

θτr(t− τ)

≈ θ⊤rt =: flin(rt),

(3)

with rt := [r (t+ nac) , . . . , r (t− nc)]
⊤ ∈ Y, where Y ⊂

Rnθ is compact with nθ = nc+nac+1, for reasons described
in Section 3.2. The values nc and nac denote the number of
(causal) samples of history, and the number of (noncausal)
samples of preview, respectively.

In this paper, this idea is extended to nonlinear systems
by assuming that the nonlinear system G−1(q) can be
represented with a non-causal nonlinear finite impulse
response (NFIR) parametrization, such that the control
effort u(t) required to realize output sequence yt :=

[y (t+ nac) , . . . , y (t− nc)]
⊤ ∈ Y can be written as

u(t) = f (yt) , (4)

where f : Y → R is an alternative form of G−1(q) : R → R,
in which q has been eliminated.



2.3 Problem formulation

In this paper, the aim is to model the function f in
(4) describing G−1 from a dataset D = {u(t), y(t)}Mt=1,
such that f(rt) yields the control effort (or feedfor-
ward signal) u(t) that realizes reference sequence rt :=

[r (t+ nac) , . . . , r (t− nc)]
⊤ ∈ Y. Note that by learning f ,

feedforward samples u(t) can be computed for any rt, i.e.,
task flexibility is allowed.

3. NONLINEAR FEEDFORWARD USING GAUSSIAN
PROCESS REGRESSION

In this section, it is explained how Gaussian Process re-
gression is employed to generate feedforward signals for
nonlinear systems. First, it is explained how NFIR sys-
tems can be represented by Gaussian Processes. Second,
the choice of kernel function is addressed from a design
perspective. Finally, it is shown how a data-set can be
obtained that allows for task flexibility.

3.1 Gaussian Process models of NFIR systems

To learn f in (4) from data, it is regarded as a Gaussian
Process (GP), see Rasmussen and Williams (2006).

Definition 2. (Gaussian Process). A Gaussian Process is
defined as an indexed family of random variables g(x) ∈ R
with x ∈ X , any finite number of which have a joint
Gaussian distribution.

Hence, if f(yt) is a GP, then there exists a joint distri-
bution between observations of u(t) = f(yt) + ε(t) and
unknown feedforward samples u(t) = f(rt). It is shown
next how GPs can be used to make predictions of these
feedforward samples, based on observations of u and y.

Let the covariance between any two control effort values
required for output sequences yt be defined by a kernel
function

k(yt1 ,yt2) := cov(f(yt1), f(yt2)). (5)
This kernel function imposes properties on the function
space of f , as explained in detail in Section 3.3. Given a
dataset D = {Y,u}, with

Y = [y1, . . . ,yM ]
⊤
,

u = f(Y ) + ε = [u(1), . . . , u(M)]⊤,
(6)

and assuming a zero-mean prior on f , define the joint
distribution[

u
f(R)

]
∼ N

(
0,

[
K(Y, Y ) + σ2

nI K (Y,R)
K (R, Y ) K (R,R)

])
, (7)

where R = [r1, . . . , rN ]
⊤

is a toeplitz matrix constructed

from r ∈ RN , with rt := [r (t+ nac) , . . . , r (t− nc)]
⊤

and σ2
n the variance of the measurement noise ϵ. The

covariance matrices K are constructed by evaluating k for
each element.

To compute the feedforward signal f(R) for reference
R, the joint distribution in (7) is conditioned on the
observations using Bayes’ rule. The resulting posterior
distribution p(f(R) | Y,u, R) is a Gaussian with mean

E [f(R)] = K(R, Y )
[
K(Y, Y ) + σ2

nI
]−1

u. (8)

This yields an analytic expression for the expected feed-
forward signal required for reference r. Note that this
entire expression can be computed offline if the reference
is available. If the reference is not available beforehand,
only the K(R, Y ) term needs to be computed online.

3.2 Model structure

Whether the realization E[f(R)] is representative of the
real function f is dependent on the choice of k in (5). This
can be seen easily by rewriting the posterior mean (8) in
scalar form as

u(t) = E [f(rt)] =

M∑
i=1

αik(yi, rt), (9)

with α = (K(Y, Y ) + σ2
nI)

−1u. Naturally, if k were to
be chosen inappropriately, e.g., linear in rt, as done for
linear systems in Blanken and Oomen (2020), no nonlinear
function f could be represented by the posterior mean.
A particularly widely applicable type of kernel is the
universal kernel (Micchelli et al., 2006).

Definition 3. (Universal kernel). Given any compact sub-
set Z of Y, let C(Z) be the space of all continuous
complex-valued functions from Z to C with maximum
norm ∥.∥Z . More over, let K(Z) denote all functions in
C(Z) which are uniform limits of functions of the form (9)
where {yi : i ∈ Nn} ⊆ Z. If for any such Z, any positive
number ϵ and any function f ∈ C(Z), there is a function
g ∈ K(Z) such that ∥f − g∥Z ≤ ϵ, then K is a universal
kernel.

Hence, universal kernels are structurally capable of repre-
senting any continuous f through (9), even if the nonlinear
structure of f , or equivalently, G−1(q), is unknown.

In practice, some information on f may be available, such
as a measure of smoothness. This information can be
exploited through stationary kernel functions, as explained
in more detail in the next section.

Definition 4. (Stationary kernel function). A kernel
k(yt1 ,yt2) is stationary if it can be expressed as a function
of the difference between its inputs, i.e., yt1 − yt2 .

This choice of kernel leads to a data-dependent model (9)
in which control effort values u(t) = f(rt) are inferred from
observations of u(t) corresponding to similar sequences
yt ≈ rt, i.e., similar paths in Y require similar control
effort values. The next section lists some examples of
stationary kernels from a design perspective.

3.3 Kernel selection

This section lists two example kernels that pose a prior on
the smoothness of the dynamics. The kernel functions are
compared visually in Figure 3.

Smooth dynamics In this paper, dynamics are considered
smooth if f is infinitely differentiable. A kernel that
imposes smoothness on f by being infinitely differentiable
is the squared-exponential kernel :

k (yt1 ,yt2) = σ2
f exp

(
−1

2
ρ

)
, (10)

where
ρ = (yt1 − yt2)

⊤
Λ−1 (yt1 − yt2) , (11)

in which hyper-parameters σ2
f = Var(f(yt)) relate to

the maximum magnitude of the control effort and Λ =
diag ([ℓ1, . . . , ℓnθ

]) contains kernel length-scales ℓi. This
kernel is universal, see Sriperumbudur et al. (2011).

Non-smooth dynamics Alternatively, f may be finitely
differentiable, e.g., as a result of static friction. In this
case, the Matèrn3/2 kernel function can be used, which is
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)
along one dimension of yt1 − yt2 . Similar output se-
quences yt require similar control effort values u(t), as
can be seen from the high covariance near yt1 = yt2 .

able to represent non-smooth functions since it is only 1-
time mean square differentiable (Rasmussen and Williams,
2006, Section 4.2):

k (yt1 ,yt2) = σ2
f (1 +

√
3ρ) exp(−

√
3ρ). (12)

This is a universal kernel as well, see Sriperumbudur et al.
(2011).

3.4 Hyper-parameter tuning

The kernel hyper-parameters Θ = {σn σf , ℓi} can be opti-
mized automatically by maximization of the log-marginal
likelihood (Rasmussen and Williams, 2006, Section 5.4).
This is the probability of the data given the model, defined
as

log p(u | Y,Θ) = −1

2
u⊤K−1

n u− 1

2
log |Kn| −

M

2
log 2π,

(13)
with Kn = K + σ2

nI and |Kn| := det (Kn). A local

maximizer Θ̂ of the non-convex reward (13) is obtained
through active-set optimization (Papalambros and Wilde,
2017, Section 7.4).

3.5 Convergence

As the density β of the data tends to infinity, expressed in
number of observations (yt,u(t)) per unit of yt-space (e.g.,
[mnθ ]), the posterior mean of a GP with a universal sta-
tionary kernel converges to the true function (Rasmussen
and Williams, 2006, Section 7.1). In the setting described
in Section 2.1, it not possible to obtain a data-set of obser-
vations yt distributed uniformly over Y, since for sampled
motion systems, each observation exhibits y(t+1) ≈ y(t).
Still, given that the observations of yt are close to rt in
Rnθ , it can be derived from Sollich and Williams (2005,
Section 1) that

lim
M→∞

M∑
i=1

αik(yi, rt) = f(rt), (14)

if k is a stationary universal kernel with sufficiently small
length-scales ℓi. The next section describes how observa-
tions of yt ≈ rt can be obtained such that the posterior
approximately converges according to (14).

3.6 Experiment design for task flexibility

By virtue of the system parametrization in terms of a
stationary covariance function, predictions of f(rt) are in-
ferred from observations f(yt) of similar output sequences
yt ≈ rt. Hence, this method allows for task flexibility in
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Fig. 4. Nonlinear example system of a mass with friction
described by u(t) = m

Ts
(y(t+1)− y(t))+Fc sign(y(t))

(white mesh), modeled as a GP. The posterior mean
(coloured mesh) is computed using a dataset contain-
ing observations (yt, u(t)) (red dots) extracted from
some periodic trajectories. The posterior mean is only
accurate near the data, i.e., only feedforward signals
for similar references can be predicted accurately.

so far that feedforward signals for different reference se-
quences rt can be predicted accurately if similar sequences
are present in D.

To collect a dataset that allows for the generation of
feedforward signals for flexible tasks, it is proposed to
design several signals r̃j ∈ R̃ to be used in closed-loop
experiments to obtain D, see Figures 2 and 4.

Remark 1. In closed-loop, the noise ε(t) introduces corre-
lation between u and y through feedback, leading to bias
in the estimate of G−1. This bias could be reduced by
repeating each experiment such as to observe a different
realization of the noise.

The proposed method is summarized in Procedure 1. It

Procedure 1: GP-based feedforward for nonlinear
systems

Result: Feedforward signal uff,i for every reference
ri ∈ R.

Input: references R, signals R̃, initial feedforward
controller F (q), feedback controller C(q).

Define a suitable kernel function k;
Define nc, nac;

for each signal r̃j in R̃ do
Conduct a closed-loop experiment with r̃j to
obtain observations yt and u(t);

end
Format the data to obtain D = {Y,u} using (6);
Optimize the hyper-parameters, see Section 3.4;
for each reference ri in R do

Compute the posterior mean uff,i = E[f(R)] using
(8).

end

is stressed that this procedure contains no recursion and
hence there can be no issues with stability. Whether the
posterior mean E[f ] converges to the true f (see Section

3.5) now solely depends on the chosen C(q), F (q) and R̃.
The next section shows that even with simple choices of
C(q), F (q) and R̃ the procedure can lead to improved
tracking performance.



Fig. 5. The desktop printer used for experimental valida-
tion. The motor on the bottom left drives the pulley,
which is connected to the print-head by the toothed
belt.

4. EXPERIMENTAL VALIDATION

The proposed GP-based method for nonlinear feedforward
control is applied to a desktop printer with friction, to
demonstrate its ability to learn nonlinear dynamics for
flexible tasks.

4.1 Setting and goal

The experimental set-up consists of a current-controlled
A3 printer subject to static friction, depicted in Figure 5,
connected to a computer running Simulink with a sample
frequency of 1 kHz. A feedback controller C(q) is available,
given by

C(q) =
108.6q3 + 112.9q2 − 100q − 104.3

q3 − 0.6499q2 − 0.9465q + 0.7035
, (15)

as well as an initial feedforward controller F (q) of the form

F (q) = 2.8531
q − 1

qTs
+ 0.083

(
q − 1

qTs

)2

, (16)

i.e., a controller with velocity and acceleration as basis.
The goal is to track two third-order references r1 and
r2 = 1.05r1 of length N = 4501 samples, depicted in
Figure 6, using the closed-loop scheme of Figure 2. To
this end, the GP-based approach described in Section 3 is
applied to learn a new feedforward controller F̂ (q).

4.2 Approach

Following Procedure 1, a kernel function is defined first.
The Matèrn3/2 kernel (12) is chosen, because it is expected
that static friction leads to a non-smooth function f(yt).
The number of samples history and preview are defined as
nc = 20 and nac = 40 respectively.

Subsequently, 11 signals r̃j are designed as scaled varia-
tions of r1, such that

R̃ : r̃j = ajr1, aj ∈ [0.90, 0.92, . . . , 1.10]. (17)

Note that this leads to r̃6 = r1 ∈ R, i.e., the first final
reference is used during training. On the other hand, the
second final reference r2 is not used during training.
Each signal r̃ is used for one closed-loop experiment using
C(q) and F (q), the result of which is shown in Figure
6. The observations of u(t) and y(t) are used to form D
using (6), assuming u(τ) = y(τ) = 0 ∀τ < 0, τ > N . For
computational reasons, the size of the dataset is reduced
by only taking every 30 rows of Y and u into account
to form D. It was found that this hardly affected the
achieved performance, since many adjacent rows of Y
contain similar information. This leads to a dataset of
M = 2970 observations of yt and u(t). The kernel hyper-
parameters are optimized by maximization of (13) and the
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) from 11 closed-loop experiments using signals
r̃i.
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). The GP leads
to a more complex signal, possibly to compensate for
position-dependent static friction.

feedforward signals uff,1, uff,2 are computed with (8). The
hyper-parameter optimization and the matrix inversion in
(8) require roughly 90 minutes of computational time on
a personal computer.

4.3 Results

The GP-based feedforward signals are shown in Figure
7. It can be seen that the GP-based feedforward signals
exhibit more complex variations than the signal resulting
from F (q), which may indicate that nonlinear dynamics
such as position-dependent friction are learned. Moreover,
the GP-based feedforward signal acts earlier to a changing
reference than F (q), since it has nac = 40 samples preview,
whereas F (q) has no preview.

The feedforward signal is applied in closed-loop and the
resulting error for r1 is shown in Figure 8. The results are
summarized in Table 1. It can be readily seen that the
tracking error is improved significantly. In particular, the
linear feedforward controller F (q) leads to a large tracking
error around t = 2 s since it stops at an incorrect position,
as a result of static friction. The nonlinear GP-based
feedforward controller F̂ (q), on the other hand, appears
to have learned these dynamics, since the error at this
point in time is reduced by a factor 12.

To demonstrate the ability of the method to deal with task
flexibility, Figure 9 shows the achieved performance for a
reference r2 not used during training. The tracking error



Table 1. Tracking errors with different feedfor-
ward signals.

With r1 ∈ R̃ With r2 /∈ R̃

∥e∥2 F (q) 170 [mm] 164 [mm]

F̂ (q) 68 [mm] 86 [mm]

∥e∥∞ F (q) 5.6 [mm] 4.2 [mm]

F̂ (q) 3.2 [mm] 3.6 [mm]
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Fig. 8. Error e1 = r1 − y1 using F (q) (
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Fig. 9. Error e2 = r2 − y2 using F (q) (
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). While r2 was not used during training,
the error is still reduced by the GP-based approach.

is reduced to a similar extent as with r1. This indicates
that the method allows for the generation of feedforward
signals for flexible tasks, provided that these tasks (or
references) are sufficiently similar to the observed outputs
in D. This condition appears to be satisfied, as can be seen
from Figure 6.

5. CONCLUSIONS AND FUTURE WORK

A method for inverse model control using Gaussian Pro-
cess regression is proposed that allows for learning non-
linear dynamics of unknown structure. It is shown experi-
mentally that the approach can lead to improved tracking
performance with respect to linear feedforward. Since this
method requires tasks to be similar to observed outputs
in the dataset, it can be particularly useful in situations
when many slightly different references need to be tracked.
Moreover, since the developed approach makes use of the
available controllers C(q) and F (q) to construct an im-

proved F̂ (q), it can be seen as an add-on that is applicable
without changing the control architecture.

Possible extensions include the application to multi-input
multi-output systems, and a formal means to take output
noise into account. Finally, the achievable performance can
possibly be improved further by applying the method it-

eratively, i.e., make use of the GP-based feedforward filter
to iteratively obtain a better data-set. The convergence
and stability properties of such an approach are subject to
future research.
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Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon,
B., Glorennec, P.Y., Hjalmarsson, H., and Juditsky,
A. (1995). Nonlinear black-box modeling in system
identification: a unified overview. Automatica, 31(12),
1691–1724.

Sollich, P. and Williams, C.K.I. (2005). Understanding
Gaussian Process Regression Using the Equivalent Ker-
nel. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), volume 3808 LNCS,
211–228.

Sriperumbudur, B.K., Fukumizu, K., and Lanckriet, G.R.
(2011). Universality, characteristic kernels and RKHS
embedding of measures. Journal of Machine Learning
Research, 12, 2389–2410.

Van De Wijdeven, J. and Bosgra, O.H. (2010). Using
basis functions in iterative learning control: Analysis
and design theory. International Journal of Control,
83(4), 661–675.


