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Executive Summary
The deliverable 4.1 addresses the requirements for the control layer (layer 2) on the IMOCO4.E project. It
is the basis of WP4, which is dedicated to the development of smart software modules implementing
advanced motion control algorithms. These control algorithms will target both single d.o.f. systems and
multi-axis systems. 

The algorithms discussed in this deliverable will focus on problems and situations where the classical
control is not enough due to a higher complexity on the system itself (e.g., compliant robots) or due to the
interaction between the robot and its environment (e.g., real-time obstacle avoidance).

WP4 will also be the basis for systematic control design methodology using XIL simulation and Digital
Twins as development tool which will be discussed in this deliverable.

The block diagram in Figure 1 represents an outline of the different topics covered in the D4.1.

Figure 1:  Outline of different technologies and approaches related to Smart control and covered in D4.1. They are structured in
groups with respect to their relation specific BBs.

14 
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1 Introduction

1.1 Purpose of this Deliverable

The deliverable is dedicated to the description of the initial requirements for the control layer (mainly
Layer 2), which are partially also based on inputs from WP2 (in particular, D2.1, D2.2 and D2.3), while
working  in  parallel  and  considering  D7.1  and  D7.2.  This  report  will  summarize  the  control  layer
requirements specific for the relevant BBs (BB4, 5 and 10), pilots, demonstrators and use-cases.

1.2 Structure of this Deliverable

This  IMOCO4.E  deliverable  (D4.1)  contains  a  first  iteration  of  the  requirements  of  the  IMOCO4.E
framework control layer. 

The deliverable provides a revision of different technologies and approaches for smart control that will be
addressed in the project,  including a state of the art, and the framework's architecture and relation to
different BBs to give direction for IMOCO4.E tasks that will gather more detailed requirements about the
implementation of functions and features. 

Tasks 3.1, 4.1 and 5.1 focus on requirements for specific architecture layers of the IMOCO4.E platform,
implementation  requirements  and  methodology.  Deliverable  D4.1  will  present  approaches  for  smart
control including a brief revision of the shortcomings from the state-of-the-art, needs for the future, and
how this translates into specific requirements that outline the work to be done in WP4.

Section 2 of this deliverable will provide an overview of the IMOCO4.E framework and how it relates to
Layer 2. Section 3 will review the xIL methodology and how Digital Twins can help in the development
of motion control tools. Section 4 will cover the state of the art and planned future progress of several
control algorithms and systems. Section 5 will study the relationship between path planning and real-time
control/obstacle avoidance. Section 6 will review the different software and hardware components needed
for real-time applications. Finally, section 7 will detail the relationships between BBs and the pilots/use
cases/demos of the IMOCO4.E project and section 8 will close the document with a short conclusion.

1.3 Intended readership

This deliverable will be addressed to the partners involved in WP4, as well as any partner interested in the
definition and development of Layer 2 technologies.

15 
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2 IMOCO4.E framework overview
In this chapter, the initial version of the IMOCO4.E reference framework is revisited after being defined
in D2.3 to better frame the requirements related to smart control. This deliverable mainly considers the
scientific and technological (ST) development objectives.

The IMOCO4.E reference  framework is  configurable  from the  lowest  layer  (Layer  1)  to  the  human
interfaces and supervisory layer (Layer 4). D4.1 is focused on smart control and thus mainly framed in
Layer 2,  although including also topics of Layers 1 (sensors and signals integration), 3 and 5 (such as
models  and  Digital  Twins):  These  topics  being  covered  in  D4.1  corresponding  to  other  layers  of
IMOCO4.E architecture shall  not be seen as unnecessary overlap, but rather as glue components that
allow  to  integrate  technologies  and  developments  being  done  at  different  levels  across  IMOCO4.E
architecture. An example is how in D4.1 we briefly explain how to extract and use models for smart
control,  while  WP5 is  more specifically  dedicated to  Digital  Twins  (DT),  etc.   This  is  part  of  how
IMOCO4.E brings MBSE (Model-Based System Engineering) approach to all  the architecture layers.
Furthermore, these layers will demonstrate how AI supports the optimization of processes. 

As stated in  D2.3,  the  first  version of  the  IMOCO4.E reference framework definition comprises  the
following viewpoints. Additionally, the BBs are abstracted as components.

 Architecture viewpoint
 AI viewpoint
 Digital twin viewpoint

Figure 2: IMOCO4.E reference framework architecture viewpoint – initial version

The Architecture viewpoint is illustrated in Figure 2 (extracted from D2.3). Note that Platforms refer to
the combination of software and hardware.

The AI viewpoint (illustrated in Fig. 3, extracted from D2.3) provides the data flow, interfaces and BB 
interactions required to achieve the project goal. 

16 
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Figure 3: AI viewpoint with BB interactions (from D2.3)

The general principle is that data is collected from Layer 1 (sensors, edge platforms and actuators) and
used by the AI framework for modelling, training, optimisation, analytics and/or services. Additionally,
data can be collected from Layer 2. The data flows from layers Layer 1, Layer 2 and Layer 3 to the AI
framework and back to the corresponding BBs are illustrated in Figure 3. 

In this D4.1, there are different approaches that will create models (as part of the dataflow of the AI
framework). Some of these models will be useful in upstream layers, but many will be also useful within
Layer 2 (IA facilitating smart control).

As indicated in D2.3, the DT concept is rather diverse, being the core concept of a DT the coupling of
physical entities with virtual models cross-enriching each other to benefit the entire system (Jones et al,
2020). Another widely accepted representation of a DT is the five-dimensional  DT model illustrated in
Figure  3 and  derived  from  (Qi  et  al,  2021).  In  the  IMOCO4.E  framework,  a  DT comprises  five
dimensions – the physical entity, virtual model, data, service, and connection or interaction. The physical
entity is the foundation of the DT. Virtual models model the physical entity and reproduce the physical
geometries, properties, behaviours and rules (Qi et al, 2021). A virtual model is an abstraction of (a part
of) the physical entity. Data is the core component and key driver of the DT. Data can be obtained from
the physical entities, generated from the virtual models, obtained from services or provided by domain
experts and users. A model is a part of the DT and can be independent of the DT. However, a DT has the
models as one of the five dimensions and is one of the topics of D4.1.

This deliverable will also use I-MECH’s D4.1 and D4.2 as a foundation of the more classical control
algorithms and basic concepts of motion control. This foundation will allow us to focus on the more
advanced control algorithms and the novel issues IMOCO4.E will tackle.

17 
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3 XIL and Digital  Twins  tools  for  the  development  of  motion
control systems (Task 4.2)
3.1 Introduction

Product representation has changed a lot over the last 30 years, from drafting to full digital mock-ups of
the product assembly. 

Performance  verification  has  improved from a  build-and-break  approach to  the  current  practice  that
includes significant simulation work as well as test. Therefore, product description evolved to full system
mock-ups  that  cover  not  just  mechanical  but  also  electrical,  software,  and  controls  descriptions.
Moreover, these must be fully integrated into an overall  Product Lifecycle Management (PLM) system to
ensure we can close the loop from requirements to as-designed behaviour and beyond to manufacturing
and usage (Figure 4)

Figure 4: Evolution of product engineering

Many simulation packages have been developed in that philosophy to provide a large panel of coupled
tools for engineers. The success of all these simulations packages is related to the possibility to be open
and flexible, to interface with different 1D/3D software and to provide a consistent and continuous x in
the  Loop  (where  X  can  mean  Software,  Model,  Processor,  Hardware)  capable  framework.  DT  in
manufacturing  empowers  intelligence  to  interconnected  machines  enabling  them  to  orchestrate  and
communicate with simulation packages in xIL manner. One of the core technologies for the DT vision is
Reduced Order Model since it allows compressing simulation models for real time simulation as well as
model exchange by increasing the speed of model execution while maintaining required accuracies and
predictability.

By involving xIL simulation and DT as important development tools IMOCO4.E project is proposing to
provide a systematic control design methodology consisting of a joint modeling and (robust) model-based
design approach.

3.2  State of the Art

The state of the art presented in this section is covering the two subtasks: Definition of xIL methodology
for the development of motion control algorithms (subtask 4.2.1), Development of reduced models for

18 
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control algorithm development and implementation (subtask 4.2.2) where the xIL and reduced model
concepts are explained below.

3.2.1 xIL methodology

MiL/SiL/HiL/PiL are  terms used in  the context  of  control  systems development which means that  a
control software is being built and it interacts with a mechatronic system. Typically, these are referred to
as the “controller” and the “plant”. When using a model-based workflow to create both the controller and
the plant, then these terms represent how real the controller is.

 Model in the Loop (MiL): a model of the control works with a model of the plant. The
model of the control is in simulation and is connected directly to a model of the physical
system within the same simulation. Extremely fast development occurs at this stage as you
can make small changes to the control model and immediately test the system.

 Software in the Loop (SiL): the control model is slightly more “real” in the sense that the
model is no longer being executed but rather the model has been coded into C or C++ and
then inserted back into the overall plant simulation. This is essentially a test of the coding
system (whether auto-coded or human coded).  Design iteration slows down slightly from
MiL but coding failures start to become evident.

 Hardware in the Loop (HiL):  the control  system is fully installed into the final control
system and can only interact with the plant through the proper I/O of the controller. The plant
is running on a real-time computer with I/O simulations to fool the controller into believing
that  it  is  installed  on  the  real  plant.  In  this  case,  the  only  difference  between  the  final
application and the HiL environment is the fidelity of the plant model and the test vectors that
are being used. HiL is often used only for software validation rather than development as the
design iteration is very slow at this point. However, this test is closest to the final application
and therefore exposes most of the problems that will be seen.

 Processor-in-the-Loop  (PiL): name given to a testing phase during which the software is
executed  typically  on  a  prototypical  hardware  board  equipped  with  the  (planned)  target
processor, thus allowing the evaluation of the main possible scenarios. The objective is an
early  assessment  of  the  concrete  resource  requirements  of  the  software  (timing  domain,
memory  consumption,  etc.).  PiL  is  usually  considered  as  a  subset  of  the  HiL  phase.

The successive phases that have to be followed to perform real-time simulation of a controlled system
known  as  Model-in-the-Loop,  Software-in-the-Loop  and  Hardware-in-the-Loop,  respectively,  are
presented in the figure below.
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Figure 5: MiL, SiL and HiL phases in the V-diagram

3.2.2 Reduced Order Model

Reduced  Order  Model  (ROM)  is  a  simplification  of  a  high-fidelity  static  or  dynamical  model  that
preserves essential behaviour and dominant effects, for the purpose of reducing solution time or storage
capacity required for the more complex model.

ROM is probably the most important mathematical technique for realizing a DT during the life cycle of a
product.  Conform with (Dirk Hartmann et al,  2018), it  enables new levels of interactivity, reliability,
continuity, accessibility, and distributability of simulation models, where:

 Interactivity: Model order reduction directly reduces the number of degrees of freedom and
therefore  is  able  to  generate  arbitrary  fast  models.  For  real  time  applications  a  suitable
compromise between accuracy and speed can be realized, e.g., by adaptive methods.

 Reliability:  In  most  cases  the  speed-up  of  simulations  tools  lead  to  a  lack  of  accuracy.
However, this lack of accuracy should be quantified, because the user wants to know the
expected accuracy of the reduced model.

 Continuity: Seamless workflow of simulation tools during the life cycle is still a major vision
since many years. For the design, a lot of manual effort has to be spent in order to obtain
accurate models. On system level simulation and for real time applications very fast models
are  required  for  exactly  the  same  component,  again  requiring  high  manual  efforts.  The
technique of  model  order  reduction exactly  bridges  the  different  applications,  i.e.,  model
order reduction aims to automatically generate fast models from the comprehensive design
models.

 Accessibility: Setting up complex models for design is still a task for experts. The generated
fast models however have a standardized format and can be integrated into system simulation
by non-experts. This point is a central aspect in the DT vision.

 Distributability: Solving the fast models generated by model order reduction requires only
matrix-vector multiplications. Thus, they may run also on very small computers (and not only
on specialized workstations).

Reduced order models can be created in 3 steps: collecting data from which model can be trained and
validated, fitting reduced order models and exporting models for usage in various targets.
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Figure 6: ROM workflow

To successfully use Reduced Order Model for simulation speed-up two techniques can be employed.
Each technique has its own advantages and drawbacks:

 Physical-based order reduction: it requires a detailed understanding of the physics modelled, 
the tool, and the solver working principles to be used effectively. It mainly aims at reducing 
the number of state variables and the highest frequencies dynamics modelled to speed up the 
simulation.

 Artificial Neural Network (ANN): starting from a dataset of input/outputs of a given model 
(system), these algorithms can be trained to reproduce the correlations between them. They 
are very efficient from a computational point of view. On the negative side, the physics of the
model they replace are not accessible. Their limitation adds up with those of the original 
model. Finally, their validity domain, determined by the input/output choice and the breadth 
of the dataset used for the algorithm training, must be respected with care.

The table in Figure 7 presents ROM techniques commonly applied to systems simulation, along with
some guidelines and limitations.

Figure 7: Creation Reduced Order Model: different methodologies

HiL means Hardware in  the Loop; LTI,  Linear  Time  Invariant;  POD, proper Orthogonal  Decomposition;  RSM,  Response
Surface Model; SVD, Singular Value Decomposition; CMS, Component Mode Synthesis; DEIM, Discrete Empirical Interpolation
Method;  ECSW,  Energy  Conserving  Sampling  and  Weighting;  PGD,  Proper  Generalized  Decomposition;  and  PMOR,
Parametric Model Order Reduction.

3.3 Progress beyond the SoA
The following results are expected as the project outcomes:
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Definition of xIL methodology for the development of motion control algorithms
A methodology for control system development (e.g., with a help of Functional Mock-up Interfaces 
(FMI) or XIL standard) will be defined, to be used as a reference for tasks related to motion control 
algorithm development where the objectives are:

 To develop optimized algorithms in a shorter time; 
 To directly implement model-based controllers. 

Development of reduced models for control algorithm development and implementation
To improve dynamic performance of mechatronic systems complex models should be reduced by 
separating the relevant features that affect the controller. In this purpose the reduced order modeling 
will links a large variety of methods from different domains (equation-based, statistics, linear algebra,
and machine learning) offering a selection of tailored methods for various data types to efficiently 
build up models without domain knowledge.

3.4  Requirements
ID Requirement Comments
R1-
D4.1

XiL methodology and DTs  must guarantee
system  safety  by  means  of  progressive
testing of software and hardware components

XiL  methodology  allows  the  testing  of
different components on each stage, ensuring
that the software is safe before it can be tested
on real hardware

R2-
D4.1

All DTs must provide a clear estimation of
the sim-to-real gap between the DT and its
physical counterpart

R3-
D4.1

DTs  should  be  compatible  with  standard
tools.
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4 Smart control algorithms library (BB5/Task4.3/Task4.4)
4.1  Introduction
 There are many smart control algorithms that fit many different problems and situations. In some cases, a
higher  precision demands  for  algorithms that  focus on  a  specific  part  of  a  problem,  like  friction or
vibration damping. In other cases, the non-linearities of a system may force us to use non-conventional
kinds of control like machine learning. 

In D4.1 of I-MECH (I-MECH, 2022) basic concepts of control and  several generic techniques where
defined.  This  deliberable  will  use  this  foundation  to  explore  new  and  more  advanced  control
functionalities which tackle most of the unresolved problems in the field.

In this section we will review several smart control algorithms and the systems for which they can be
used in order to obtain better results than traditional control can offer us

4.2  Control functionalities
4.2.1 Vibration control for mechatronic systems
4.2.1.1 Introduction  

Modern motion control systems rely on properly adjusted velocity and position feedback loops. Their
accurate tuning is essential when dealing with stringent performance requirements. One of the limiting
factors which affect the achievable quality of control is the mechanical compliance of the driven load.
Proper adjustment of the feedback control or  smart feedforward utilization is  necessary to cope with
unwanted transient or residual oscillations. 

Input  shaping is  a well-known technique to pre-compensate oscillatory modes of flexible systems.  It
offers some inherent advantages to conventional IIR notch filters used in industrial drives, such as finite-
time monotonous response or inherent robustness to modelling errors that are part of the shaper design
process. New possibilities for shaping filter design emerged with the evolution of numerical optimization
methods. Novel design problem formulations are possible, allowing the embedding of various crucial
design constraints in the shaping filter synthesis process. The development of optimization-based design
algorithms for a class of Zero-vibration shaping filters is one of the planned outcomes of the project.

Active and passive vibration damping using input shaping and auxiliary sensors 
A key issue of elastic servo systems is the absence of direct information about the behavior of the driven
load. Only motor-side feedback is often available, making the stabilization and precise positioning of an
oscillatory load difficult. A load attached accelerometer may be a suitable choice for a wide range of
applications due to the low price, small dimensions and simple mounting. In other applications, a position
encoder may be installed at the load side to measure the state of the driven working mechanism directly.
This  activity  aims  to  develop  novel  control  structures  allowing  integration  of  auxiliary  sensory
information from the point  of  interest  to form fully closed-loop solutions.  This  can bring significant
performance advantages compared to conventional collocated control schemes with the feedback closed
solely from the actuator side variables.

Vibration damping in time-varying elastic systems
Mechanical  systems  often  present  significant  variations  in  the  dynamical  model  depending  on  the
operating points. Thus, vibration modes could change during the execution of the task. On the one hand,
the designer of the control strategy could cope with this parameter variation by considering the worst-case
scenario, which leads to a robust but underperforming solution. On the other hand, the controller can
embed variations of the model parameters resulting in higher performance and higher design cost.
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4.2.1.2 State of the art  

Unwanted mechanical oscillations encountered in motion control applications can lead to a deterioration
of quality of control and may cause an increased wear of the mechanical components of the system. They
should be avoided by a proper mechanical design of the machine or by appropriate adjustment of the
control system during the commissioning phase. Three main approaches are used in practice to deal with
vibrations.

Figure  8:  Mechanical  damping  using  a)  vibration  isolator  b)  vibration
absorber

Mechanical  damping  can  be  realized  by  suitable  adjustment  of  machine  construction.  The  system's
resonance frequencies may be shifted to higher values outside of the expected excitation bandwidth by
increasing the stiffness of the critical parts of the mechanics. However, an increase in the overall mass
leads to  higher  construction  costs,  lower  energy efficiency,  slower  dynamics  of  motion due  to  high
inertias etc. Reinforcement of the machine construction can be problematic in some applications due to
the inevitable use of flexible components such as ropes, gears with elastic parts or long manipulator arms.
Additional mechanical elements improving the overall level of damping may be used. Passive isolation
systems or vibration isolators contain mass, spring and damping elements inserted between a moving
payload and a rigid frame or ground. The mass and spring cause energy dissipation and provide additional
damping.  They  essentially  behave  as  mechanical  low-pass  filters.  Another  approach  uses  vibration
absorbers which consist of a secondary inertia-spring system coupled to the payload. They generally act
as  mechanical  notch-filters.  Proper  tuning  of  the  absorber  parameters  according  to  the  resonance
frequencies of the machine is needed for proper operation. Another issue is the proper placement of the
machine with respect to stiffness of the foundation and sub-soil.

Vibration damping may also be provided by employing the motion control  system. Passive vibration
control  (sometimes  called  gain  stabilization)  reduces  the  amplitude  of  the  excitation signal  (actuator
force/torque) in the frequency range of the system resonances to prevent from excitation of vibrations.
This is performed by implementing a low-pass or notch filter in the motion control loop. The low-pass
filters are easy to use as only the cut-off frequency has to be set. However, the phase-lag introduced by
the filter limits the achievable bandwidth of the closed loop. The filter may operate in the open-loop
configuration to shape the setpoint command obtained from the trajectory generator or connected in series
with the feedback compensator. Most of the commercial servo-drive units offer this capability. Usually, a
two-pole two-zero IIR notch or biquad filter is implemented in the feedback loop. The filter zeros are
commonly  set  to  cancel  the  weakly  damped  poles  of  the  system  and  the  feedback  compensator  is
designed for the resulting damped system to obtain a stable closed loop. This technique proved to be
effective  for  high-frequency  modes  above  the  target  closed-loop  bandwidth.  However,  it  is  less
appropriate when the resonance modes overlap with the desired bandwidth (Ellis & Gao, 2001). 

An  alternative  way of  the  notch  filter  design  is  a  so-called  input  shaping  method or  zero-vibration
shaping. The goal is to design a Finite Impulse Response (FIR) shaping filter that modifies an input signal
of an underdamped oscillatory system so that the level of excited vibrations is minimal. The idea of
shaping filter consisting of time delay elements was presented in (Smith,  1958),  followed by several
contributions extending this concept (Singer & Seering 1990; Singhose, 2009). 
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A general n-pulse input shaping filter can be described in the continuous-time domain in the form of
impulse function

hs (t )=∑i=1

n
A i⋅δ (t−t i ) , 0≤t1<t t+1 , Ai≠0                    (Eq. 4.1)

where Ai denotes amplitudes of the i-th pulse and d is Dirac function with time-shift ti.

The  response  of  the  shaper  in  the  time  domain  can  be  determined  by  performing  the  convolution
operation

v (t )∫
−∞

∞
hs (τ ) u (t−τ ) d τ=∫

−∞

∞

(∑i=1

n
Ai δ ( τ−t i ))u (t−τ ) d τ=∑i=1

n
A iu (t−t i )

            (Eq. 4.2)

v (t )=∫
−∞

∞
hs (τ )⋅u ( t−τ ) d τ=∑i=1

n
A i⋅u (t−t i )

            (Eq. 4.3)

It can be seen that the filter has the form of a sum of weighted time delayed values of the input. The goal
of the filter design is to choose the values of amplitudes and time delays in such a way that after the last
pulse has been led to the system, the amplitude of the excited residual vibrations is equal to zero (Fig. 9). 

Figure 9: Principle of Zero-vibration input shaping methods

Various design methods to accomplish this objective have been proposed in the literature. A common
design strategy of the input shaper is via the so-called residual vibration function

V (ω ,ξ )=e
−ξ ωt n √C ( ω, ξ )

2
+S ( ω, ξ )

2              (Eq. 4.4)

Where

C ( ω,ξ )=∑i=1

n
Ai e

ξ ωt i cos  (ω√1−ξ2 t i )≜c (ω ,ξ ) h             (Eq. 4.5)

S (ω ,ξ )=∑i=1

n
Ai e

ξ ωt i sin  (ω√1−ξ2 t i )≜ s (ω ,ξ ) h             (Eq. 4.6)

determining the level of excited residual vibrations at the settling time of the shaper t=t n. This led to the
derivation of well-known shaper types called ZV (Zero Vibration), ZVD (Zero Vibration Derivative), EI
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(Extra  insensitive)  and their  variations,  now being considered as  state  of  the  art  algorithms in input
shaping. 

The  complexity  of  the  design  problem  increases  considerably  when  more  oscillatory  modes  of  the
controlled plant have to be considered. For such cases, several methods based on numerical optimization
were proposed (Van den Broeck et al, 2008; Cole, 2012; Goubej et al, 2020). They can deal with the
complexity of the problem and allow the definition of additional design constraints. 

The design of the input shaper is usually defined as a constrained optimization problem

min
h

 f (h )  subject to {
c d≤d

ceq h=d eq                  (Eq. 4.7)

where f(h) is a properly-chosen objective function. Some choices of the objective function lead to convex
optimization problems that can be readily solved with existing numerical methods.

The zero vibration filters have been used in various motion control applications such as overhead cranes,
flexible robotic manipulators, CNC machine tools, voice-coil motors or spacecrafts. The main advantage
compared to  conventional  notch filters  is  the  finite  impulse  response  which is  advantageous  for  the
setpoint command shaping (the overall duration of the motion is known in advance), the possibility of
infinite damping of  a certain frequency in case of discrete-time implementation and lower  phase-lag
introduced in the signal path. (Singh & Vyhlídal, 2020) reviews the latest research results in this field. 

Active vibration control methods try to alter the oscillatory dynamics of a flexible mechanical system
employing a proper feedback controller. Unlike the gain modulation of passive methods, the feedback
provides phase stabilization to the oscillatory dynamics. Compared to the passive methods, the advantage
is the ability to actively suppress the vibrations caused by external disturbances (load torque/force). The
disadvantage is the risk of instability due to the introduction of the feedback. A typical problem related to
flexible systems is so called spill-over effect. The unmodeled high-frequency dynamics (typically higher
resonance modes) may be excited by the feedback controller causing the instability of the closed loop.
Therefore, the goal is to suppress a certain number of resonances and achieve a sufficient high-frequency
roll-off of the compensator in order to prevent from excitation of unmodeled dynamics.

Figure 10: Principle of active vibration control

Numerous approaches to active vibration control  have been proposed in the literature for the motion
control  of  flexible  mechanical  systems ranging  from PID control  (Zhang & Furusho,  2000;  Goubej,
2014]), state feedback (Ji & Sul, 1995), model-predictive control (Thomsen et al, 2011), over disturbance
observers  and resonance ratio control  (Katsura  & Ohnishi,  2007),  H-infinity  optimization (Lee et  al,
2006), sliding mode control to soft-computing methods employing neural networks, fuzzy logic or expert
systems (Orlowska-Kowalska & Szabat,  2007;  Kaminski,  2010).  Nevertheless,  most  of  the industrial
motion systems still use conventional decentralized cascade PID control scheme Fig. (10).
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Figure 11: Structure of industrial motion control system

Its massive employment includes simple implementation with a reasonable number of parameters with a
clear physical meaning that can be tuned by trial and error, the possibility of sequential tuning of the
individual  loops  and  long  history  and experience  with  PID controllers  that  practitioners  understand.
Although structurally  simple,  finding an  optimal  setting of  the  PID gains  may be challenging  when
encountering a mechanically compliant system and pushing its performance to its limits (Goubej, 2016)
There is still no generic method applicable to feedback control in motion systems that are widely accepted
by the industry so far.

In many mechanical systems, the load mass can change during the operation; considering an elevator as
an example, the mass of the suspended rope changes depending on the position of the cabin and the
counterweight  (Santo  et  al,  2016;  Roberts,  1998).  Load  variations  can  significantly  change  the
resonance/antiresonance frequencies of the system, requiring the adaptation of the control strategies to
avoid vibrations (Mangare et al, 2022). This system can be described as a linear parameter-varying (LPV)
system (Amato, 2006; Copot et al, 2018). 

Figure  12:  Dynamic  model  of  a  lift
[Roberts 1998]
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4.2.1.3 Progress beyond the SoA  

The following results are expected as the project outcomes

1. Development of novel generic design methods for the optimal synthesis of robust multi-mode
input shaping filters.  A key idea is to embed prior knowledge about the uncertainty of the controlled
system in the design process to derive robust shaping filters insensitive to modelling errors. Another key
aspect to be considered is the output behavior of the controlled plant, unlike the relative excitation of the
individual  oscillatory modes commonly considered in  existing design procedures.  The importance of
contribution of the individual bending modes to the dynamics of the chosen output is revealed via the
modal  transformation  of  the  system,  providing  structural  information  applicable  in  shaper  design
procedure.  New formulations  leading  to  convex  optimization  problems solvable  with  state-of-the-art
numerical methods are planned to be derived. 

2.  Development  of  algorithms  for  feedforward  control  of  elastic  systems  with  time  or  varying
position  dynamics. The  problem  of  variability  in  controlled  plant  dynamics  requires  different
feedforward  and feedback  control  design  approaches.  Input  shaping  methods  intended  for  stationary
systems cannot be used directly due to the invalidity of the principle of superposition. Position varying
dynamics is typical for mechatronic systems working in a wide range of operating points with different
oscillatory behavior due to changes in the distributed elasticity of the driven load. An example is an
elevator system or a gantry crane manipulator with varying rope lengths resulting in changes in resonance
frequencies  corresponding  to  the  system  eigenmodes.  For  the  feedforward  control,  development  of
shaping filters in the domain of linear parameter-varying systems is envisaged. 

 3. Development of fully-closed loop control structures involving auxiliary sensors attached at the
manipulated point of interest. Motion control performance of elastic drive systems can be significantly
enhanced by introducing auxiliary feedback variables providing additional information about the load-
side behavior at the point of interest. Auxiliary feedback can be provided, for example by a secondary
position encoder or a load-attached accelerometer. Especially the accelerometric sensor may be a suitable
choice for a wide range of applications due to the low price, small dimensions and simple mounting.
Successful  applications of the acceleration feedback were reported for robotic manipulators,  machine
tools feed drives or linear positioning stages. However, proper adjustment in the control algorithms is
needed to embed the additional sensory information properly. Our goal is to focus on design methods for
control  loops  involving  auxiliary  position  or  acceleration  measurements  to  enhance  performance
achievable with conventional control structures. The possibility of enhancing model fidelity during data-
driven system identification will also be explored.
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4.2.1.4 Requirements  

ID Requirement Comments
R4-
D4.1

Gain or phase stabilization of dominant
resonance  modes   must  overlap  with
target closed-loop bandwidth

This  can  be  achieved  either  by  adequately
adjusting  the  parameters  of  existing  control
structures  or  by  employing  more  complex
control  laws  involving  the  specific  use  of
feedforward  or  feedback  control  actions,
possibly with auxiliary sensors. A fundamental
requirement is preserving the internal stability of
the  closed-loop  and  preventing  excitation  of
higher bending modes and unmodelled dynamics

R5-
D4.1

Systematic design procedures must allow
automatic  or  semi-automatic  synthesis
and  parameterization  of  the  control
structures  without  requiring  a  highly
skilled operator

The goal is to minimize commissioning time and
allow  routine  employment  of  the  methods
without the necessity for a deep background in
advanced control engineering

R6-
D4.1

Sufficient  performance  improvement
needs  to  be  had  compared  to
conventional control schemes

R7-
D4.1

Load-side  motion  control  requires  the
usage of additional sensors

i.e., accelerometers or encoders

R8-
D4.1

Computation  burdens  should  be
compatible  with  available  computation
power on the drives

Table 2: Vibration control requirements 

4.2.2 Repetitive control

4.2.2.1 Introduction  

From its first presentation for control of proton synchrotron magnet power supply (Inoue et al, 1980),
Repetitive Control (RC) has seen wide success both in research and industrial environments because of
the repetitive nature of the typical industrial task. RC configurations have been implemented in different
fields,  such as  rejection of power  supply disturbances (Nakano & Hara,  1986),  control  of  disk-drive
systems (Chew & Tomizuka,  1990)  and optical  disk-drive (Moon et  al,  1998),  vibration suppression
(Hattori et al, 2001) and robotic manipulators performing repetitive tasks (Omata et al, 1987; Biagiotti et
al, 2015).

However, many issues remain open and require further research and technological efforts to enlarge the
field of application and the effectiveness of the methods. In particular, non-linear and varying dynamics,
robustness, position-dependency and computation burdens limit RC application in many fields.

IMOCO4.E aims to overcome these limitations considering the technologies described in the following
subsections.

Torque ripple in Switched Reluctance Motors (SRM)
Switched Reluctance Motors are attractive because of their high efficiency, mechanical simplicity and
low cost (Miller, 1931). On the other hand, the non-linear relationship between torque, current and rotor
position  leads  to  a  complicated  control  scheme.  Typically,  this  involves  the  construction  of  a
commutation function, describing currents per coil, required for some requested torque which is periodic
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in position, in order to linearize the system dynamics. When this commutation function is constructed
imperfectly, either because the non-linear dynamics are unknown or because of sampling effects, torque
ripple occurs, leading to a position error that is periodic in the spatial domain. While switched reluctance
motors are a motivating example, theoretical advances in this field may carry over to other types of
actuators that rely on commutation. 

Implementation issues in repetitive control schemes – robust, inferential and delay-varying methods         
Repetitive control methods aim at designing feedback loops capable of compensating generic periodic
disturbances or tracking periodic reference signals with high accuracy. Numerous design methods were
developed, followed by the successful application of this type of control in various application domains.
Repetitive control technology has already been adopted by industry to some extent. This functionality
became  an  integral  part  of  many  commercial  off-the-shelf  products  for  motion  control,  bringing
potentially improved control performance in mechatronic applications. Nevertheless, there are still several
issues  to  be addressed both at  the  level  of  generic  design methods and algorithms,  and in  terms of
implementation problems encountered when employing repetitive controllers in real-time motion systems.
Several such issues have been identified to be solved in the IMOCO4E project. These are discussed in the
state of the art and progress beyond SoA sections, outlining envisioned contributions in this field. The
goal is to bridge the gap between the latest research and industrial applications of high-fidelity motion
systems.

Position-dependent repetitive disturbance estimation and compensation
Several mechanical applications are affected by disturbances related to positional variables like torque
ripples, pulleys, bearings,  and rail  guides (Tang et al,  2020;  Oomen, 2018). Initial  Repetitive control
strategies focused on time-dependent disturbances providing an effective performance when the system
works at constant speeds. However, a position-based repetitive control algorithm is necessary when the
constant-speed assumption does not hold. Recent works focused on this problem showing the capability
to compensate for the disturbance at the price of increased computational and memory requirements. This
aspect  makes  the  implementation  of  limited-power  edge  controllers,  such  as  the  industrial  drives,
challenging. 

It is worth considering a class of applications where the disturbance, the target variable, and the sensor are
not located in the same physical place. For example, a lift has a disturbance source due to the rail guides
of the cabin and the counterweight, the sensor is typically an encoder mounted on the motor shaft, and the
target variable is the position of the cabin. The goal is to move the cabin avoiding discomfort due to
oscillations.  A velocity  controller  achieves  this  by  measuring  the  motor  speed,  coupled  with  on/off
position sensors on the cabin's rail guide. In this kind of application, nullifying the motor-velocity error
could lead to more oscillations and discomfort of the target variable. At the same time, the usage of
disturbance estimation could mitigate these aspects by changing the system's behavior, for example, by
reducing speed, changing motor law or suppressing frequency bands.

4.2.2.2 State of the art  

The fundamental idea of repetitive control methods comes from the well-known Internal model principle
(Francis & Wonham, 1976), stating that the model of an exogenous disturbance has to be inserted into the
loop to asymptotically nullify tracking error. Considering the disturbance as a time-periodic function with
period T, the model can be obtained from the Fourier series expansion

d t=∑k=−∞

∞
ck⋅e jω k t                    (Eq. 4.8)

where  is the natural frequency. 
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Following (Yamamoto, 1993), a model that includes such dynamics is

M (s )=
1
s

·∏k=1

∞ 1

s2
+k2 ω2

            (Eq. 4.9)

This model can be written by recalling the identity

sinh  ( x )=x ·∏n=1

∞

(1+
x2

n2 π 2 )           (Eq. 4.10)

For x=T
2

· s , the model can be reduced to

M (s )=
e−sT

1−e−sT
          (Eq. 4.11)

A pure time delay with positive feedback can serve as a minimal model for an arbitrary periodic function.
Reference (Inoue et al, 1980) is considered to be one of the first documented practical applications of
repetitive  control.  General  analysis  of  closed-loop stability  and performance  of  repetitive  controllers
followed later in (Hara et al, 1985; Hara et al, 1988; Tomizuka et al, 1989). Numerous design methods
emerged in the last  decades for linear,  non-linear,  continuous or  sampled-data systems (Nagahara  &
Yamamoto 2010; Chen & Tomizuka 2014; Zhou & Jinhua 2018). Several successful applications were
reported in various application domains ranging from optical storage systems and disk drives (Steinbuch
et al, 2007), motion controls and robotics (Liuzzo & Tomei, 2008) to hydraulic manipulators (Luo et al,
2017) or power electronics (Weiss et al, 2004). A survey (Wang et al, 2009) maps important results and
provides connections to the closely related topics of  Iterative  Learning  Control  (ILC)  and run-to-run
control.

Figure  13: Conventional structure of the repetitive controller R – plug-in type parallel control
scheme complementing the standard feedback loop

 

Among several versions of the repetitive control (RC) algorithm, a basic plug-in type parallel structure
from Figure 13 is commonly applied in industrial motion systems. This scheme is suitable for practical
implementation as it extends a conventional feedback loop with the repetitive control block, allowing it to
be conveniently enabled or disabled when needed without disturbing the stability of the main loop. The
repetitive controller in the parallel form introduces a transfer function into the loop in the form of

1+R (s )=
1

1−e−sT Q ( s )
         (Eq. 4.12)
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where R is the repetitive control block from Fig. 13 and Q is a suitable shaping filter which is commonly
designed to ensure the stability of the closed loop. For the particular choice Q(s) = 1, the repetitive part
generates an infinite number of poles pk on the imaginary axis at positions

pk= j k ω ,∀ k ∈ (−∞ ,∞ )                        (Eq. 4.13)

allowing asymptotic compensation arbitrary T-periodic exogenous signals r; d, provided that the closed-
loop is internally stable. A sufficient condition of stability for an arbitrary period T can be derived from
the Small-gain theorem as

((Q (s )⋅S ( s ) ) )∞<1 ,  S ( s )=
1

1+C P
                           (Eq. 4.14)

where S denotes the closed-loop sensitivity function. This leads to a viable choice of the Q filter that is 
commonly designed to attain low-pass amplitude-frequency characteristics. Further performance 
improvement can be achieved by employing a more complex structure shown in Figure 14. A second 
learning filter L is added to provide lead compensation of the repetitive controller, allowing extension of 
the effective applicable bandwidth of the disturbance rejection.

Figure  14:  Modified structure of the repetitive  controller  R – introduction of  learning filter  L
providing phase compensation to improve disturbance rejection

 

Torque ripple in switched reluctance motors
Existing commutation strategies that aim to linearize switched reluctance motor dynamics typically rely
on inversion of the non-linear dynamics in a coil-per-coil fashion (Wang 2016; Vujicic, 2012), where an
ad-hoc approach is taken to divide currents over different coils. Moreover, when the non-linear dynamics
are not known, data-driven approaches use observer-based techniques to estimate the torque and apply
ILC to achieve accurate tracking performance (Sahoo et al, 2007). 

Implementation issues in repetitive control schemes – robust, inferential and delay-varying methods  
Robustness of repetitive controllers in terms of sensitivity to modelling errors in both assumed plant
dynamics  and knowledge of  fundamental  disturbance period is  a  challenging problem that  has to be
considered. The introduction of the time delay in the exogenous signal generator affects the stability and
performance of the whole motion control loop. Mismatch in the assumed disturbance period often causes
severe degradation of disturbance rejection capability. It may even lead to motion tracking performance
deterioration  when  compared  to  the  conventional  feedback  controller  without  the  added  RC  part.
Sensitivity to disturbance period variations was studied in (Steinbuch, 2002), followed by later results in
(Steinbuch et al, 2007; Pipeleers et al, 2008; Merry et al, 2011; Eielsen et al, 2015). The main idea is to
modify the disturbance generator to introduce wider notch regions in the closed-loop sensitivity function,
thereby  achieving  higher  tolerance  to  period  mismatch  or  adapt  the  length  of  the  time-delay  block
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continuously based on the actual state of the exogenous disturbance. Plant modelling errors were also
addressed for example in (Goubej & Schlegel,  2019), dealing with a robust  design method for fixed
structure controllers. Position-domain repetitive control was proposed in (Mooren et al, 2020), allowing
significant performance improvement in the case of position-dependent periodic disturbances.

Inferential  control  denotes  a  general  class  of  motion  control  problems  where  a  difference  between
feedback  and  controlled  variables  exists  (Oomen  et  al,  2014).  A  typical  example  is  a  problem  of
collocated velocity or position control of a mechanically compliant motion system, aiming at achieving
stringent  tracking  performance  and  vibration  attenuation  at  the  load  side  of  the  driven  working
mechanism, whereas only motor side feedback is available to close the feedback loop. Care must be taken
when designing such motion systems since good actuator side performance does not generally guarantee
acceptable  behavior  of  the  load  side  variables.  The  conventional  solution  is  to  attenuate  unwanted
transient or residual oscillations using notch or bi-quad filters inserted in the loop (Ellis & Gao, 2001) or
by tuning the feedback controller to achieve active vibration rejection functionality (Goubej & Schlegel,
2014). Such solutions may not be sufficient in the scope of repetitive control. Commonly used structures
need to be adopted in the inferential framework that inherently brings multivariable control challenges
(Bolder et al, 2014).

Multi-rate implementation of motion controllers is commonly employed by utilizing several loops with
different sampling rates. The discrepancy in the update rates typically comes from the inherent HW and
SW limitations of the control system. The interface between adjacent loops is commonly realized by
employing zero-order or first-order-hold blocks implementing necessary signal interpolation. This may be
suboptimal in terms of distributed control structures with repetitive controllers working with different
update rates than main motion loops.

Position-dependent repetitive disturbance estimation and compensation
Position-based disturbances and their compensation are an essential and actual research field (Oomen,
2018; Tang et al, 2016; Liu et al, 2017; Yuan et al, 2012). The most frequent approach is the angle-based
approach (Chien and Ma, 2013; Tang et al, 2016), where the buffer obtained by the discretization of the
time delay is fed by using the current position instead of the current time, as in Figure 15. 

The angle-based method is practically implemented by converting the position to a motor angle between 0
and 2·π, and using a look-up table with the angle as the entry and the compensation as the output. The
main challenges in this method are: the management of the non-monotonic variation of the position, as
opposed to the monotonic increment of the time; the high required memory and the computational effort
of the update of the look-up table.

Figure 15: Angle-based RC controller
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4.2.2.3 Progress beyond the SoA  

Torque ripple in switched reluctance motors
The envisioned progress beyond the SoA in reducing torque ripple in switched reluctance motors is
twofold.  First,  model-based  commutation  strategies  may  benefit  from  the  realization  that
commutation problems are inherently over-parametrized and that the design freedom can be exploited
to  reduce  torque  ripple  due  to  sampled-data  effects.  Second,  data-driven  commutation  strategies
currently rely on an accurate model-based torque observer, even if such a model may be unavailable
in practice. Hence, the automatic generation of commutation functions in the absence of a perfect
model is a possible direction for research beyond the SoA. 

Implementation issues in repetitive control schemes – robust, inferential and delay-varying methods
The following results are expected as the project outcomes

 Development  of  generic  design methods for  automatic  or  semi-automatic  synthesis  of  robust
repetitive controllers:

Robustness will be achieved in terms of inherent insensitivity to modelling errors both in the
expected value of the fundamental disturbance period and in the assumed dynamic model of the
controlled plant. As for the period sensitivity, new formulations of the design problem can be
used to modify the structure of the exogenous signal generator. This can serve to shape the band-
stop  regions  of  the  closed-loop sensitivity  function  according  to  prior  information  about  the
spectrum of the external disturbance. Insensitivity to plant modelling errors can be achieved by
employing the latest robust control theory results, e.g., H-infinity loop-shaping methods for fixed
structure controllers (Goubej and Schlegel, 2019).

 Development of new repetitive control structures in the inferential control setting:

Applying  repetitive  controllers  in  motion  systems  with  different  feedback  and  performance
variables  requires  careful  modification  of  conventional  structures  to  achieve  optimal
performance. The development of novel structures for repetitive controllers is envisioned for a
class of single-input-two-outputs systems, where a maximum disturbance attenuation is required
at a plant output that does not coincide with the one used for the stabilizing feedback control.
Systematic design methods allow derivation and implementation of such unconventional control
schemes to be developed, accounting for the stability and performance of the resulting closed-
loop.

  Delay-varying repetitive controllers:

Various control setups lead to variations in the fundamental period of the exogenous disturbance
that may be periodic in another variable than time. Proper adjustment of the internal model in the
repetitive  controller  is  needed  in  such  cases.  Our  goal  is  to  propose  algorithms  capable  of
optimally adapting the control structure with respect to prior information about the disturbance
properties.  A  specific  application  is  the  compensation  of  position-dependent  disturbances  in
motion systems arising e.g.,  due to  imbalanced load,  periodic  motion cycles  or  disturbances
torques due to cogging and motor commutation. 

Multi-rate realizations of the above-mentioned repetitive controllers will also be studied, extending
possible employment of these control schemes when memory, SW or HW constraints may occur.

Position-dependent repetitive disturbance estimation and compensation
The main improvements expected beyond the SoA are:

 To  obtain  a  reduction  of  the  required  memory  and  the  computation  effort  allowing  the
implementation  of  the  disturbance  estimation  and  compensation  in  linear-parameter  varying
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(LPV) systems. The results will be achieved by employing a disturbance observer based on a
low-harmonic model of the disturbance and exploring different representations of the disturbance,
such as wavelet and linear regression.

 Design  of  non-collocated  disturbance  observer  with  low-computational  requirements.  This
information will allow the controller to adapt its behavior to reduce the effect of the disturbance
not  only  on  the  measured  motor  velocity  but  also  on  the  load  located  after  the  elastic
transmissions. The results will be achieved by employing state-space observers and adapting the
setpoint accordingly.

4.2.2.4 Requirements  

ID Requirement Comments
R10-
D4.1

Preservation of (robust)  internal  stability of
the  closed-loop  after  the  addition  of  the
repetitive control structure

Careful design of both feedback compensator
and repetitive control module has to be done
as  the  inherent  time-delay  nature  of  the
algorithm  tends  to  destabilize  the  feedback
loop.  Robustness  to  plant  and  disturbance
parameters variation is also an issue

R11-
D4.1

Systematic  design  procedures  allow
automatic  or  semi-automatic  synthesis  and
parameterization  of  the  control  structures
without requiring a highly skilled operator

The goal is to minimize commissioning time
and allow routine employment of the methods
without the necessity for a deep background in
advanced control engineering

R12-
D4.1

Sufficient  performance  improvement
compared  to  conventional  feedback  control
to advocate more complex control structures
requiring  additional  design,  commissioning
and maintenance costs

R13-
D4.1

The  strategy  should  allow  for  flexibility
towards different tasks

R14-
D4.1

Solutions  to  the  over-parametrized
commutation problem should penalize power
consumption

R15-
D4.1

Control  algorithms  for  switched  reluctance
motors  should  consider  that  reversing  the
direction  of  current  does  not  reverse  the
direction of torque

Table 3: Repetitive control requirements

4.2.3 Impedance or compliant control for robot manipulators

4.2.3.1 Introduction  

In the last decades robotic technology has evolved rapidly for its application in industrial domains, with
fast moving robotic platforms performing mainly stiff repetitive movements in very structured scenarios.
This has represented a revolution in the industrial and automated manufacturing domain. Accuracy and
fast movements are possible using high power actuators and stiff position-based control schemes. In this
framework, a stiff robot end effector is designed to have predetermined positions or trajectories, despite
any  external  forces  applied  to  the  robot.  This  is  potentially  dangerous  for  operators  and  thus  their
workspace is indicated with a security perimeter (hazard zone) that human operators shall not cross while
the robot is working. 
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More  recently,  robotics  has  penetrated  many  other  application  domains  that  require  Human-Robot
Interaction (HRI) (Goodrich & Schultz, 2008). New generations of compliant robots intensively interact
with humans (e.g., rehabilitation therapy (Volpe et al, 2009), social interaction (Wada & Shibata, 2007),
and education (Baxter et al, 2017). Compliance motivates the use of new robotic elements, both hardware
(flexible versus stiff materials, elastic actuators, low-power actuators, etc.) and software (torque versus
position control, adaptive control systems, etc). Regarding hardware design, robots can be equipped with
passive intrinsic compliance by means of different elastic components, muscle-like actuators, and/or soft
materials. This approach offers a compliant alternative to classical stiff-bodied robots. But in this case
(robots with elastic components), traditional position control methods are not of direct application thus
demanding new control strategies (Diamond et al, 2012; Rus & Tolley, 2015). 

Traditional position-based methods offer excellent accuracy for industrial rigid-bodied robots in well-
structured environments  (e.g.,  automated car  factories),  where  HRI is  explicitly  avoided since safety
cannot be guaranteed. On the other hand, when HRI is required, compliance demands torque control. But
torque  control  strategies  based  on  dynamics  modeling  cannot  be  efficiently  applied  since  the
nonlinearities  of  elastic  components  make  detailed  modeling  or  robot  dynamics  extremely  complex
(Chaoui et al, 2009). Artificial intelligence (AI) is now mature to address these challenges. In particular,
widely used Artificial  Neural  Networks (ANNs) have been proposed and tested as a solution for the
control of these compliant robots without requiring prior knowledge of the robot dynamics (Chaoui et al,
2009; Robinson et al, 2016). 

The challenge: Traditional industrial robotic technology (position-based and powerful actuators) cannot
be  applied  to  robots  interacting  with  humans  because  they  are  potentially  dangerous  in  case  of
malfunctioning. Robots specifically designed for interacting with humans are called collaborative robots
(Cobots) and need to be compliant (safe for human interaction). In robotics, compliant control can be
defined as  the  allowance of  deviations  from its  own equilibrium position,  depending on the applied
external force. In this framework, “passive compliance” can be achieved through elastic components at
the effectors.  This makes the robot  inherently safer,  since these elastic components will  mitigate the
impact in case of bumping into an object or operator. 

Industrial  robots  mainly  use  stiff  position  driven  control  schemes  with  PD (proportional-derivative)
controllers. The trajectories are defined in terms of target positions and the local controller implements
torques depending on the distance to the target position. But in this case, the applied torque is not directly
defined by a higher-level controller but rather at a lower level (local control) depending on the movement
execution. This represents a threat for operators, since in case of external forces being applied to the
robot, the local effector controller may drive compensation terms to correct these deviations from the
target trajectories with torque commands not directly delivered by high control units.

In this framework, active robot compliance can be achieved by high frequency sampling of the applied
torques and implementing safety driven mechanisms (such as breaking the robot in case of detecting high
errors).  A  higher-level  compliance  control  scheme  can  be  implemented  if  accurate  inverse  dynamic
models of the robotic plant are used. Inverse dynamics can be used to calculate the torques that a robot's
actuator must deliver to make the robot's end-point move along a planned trajectory. But dynamic models
of robots integrating elastic components at their joints are very complex.

4.2.3.2 State of the art  

Classical algorithm control limitations based on analytical cobot model
Any robot dynamic model describes the relationship between the torque values applied on the robot joints
and the  resulting  motion.  This  relationship  is  mathematically  expressed  using  the  analytic  Lagrange
formulation:
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τ=M (q' ' ) q+C (q ,q ' )+g (q )+ξ (q ,q ' ,q ' ' )           (Eq. 4.15)

where,  (q,q′,q′′),  are  joint  position,  velocity,  and  acceleration,  respectively.  𝜏 stands  for  the  vector
containing the joint torque values.  M(q) defines the robot inertia matrix.  C(q,q′) matrix computes the
inertia and Coriolis effects whereas g(q) vector computes the gravitational effects on the robot. Finally,𝜉(q,q′,q′′) stands for the torque/force effects of those robot elements that were not considered elsewhere
in the dynamic model, i.e., viscous friction, or the nonlinear effects of the series elastic actuators (SEAs)
springs within the Baxter cobot (Fitzgerald, 2013).

Most rigid robots, equipped with high ratio gearboxes, assume 𝜉=0 in dynamic modeling since M(q) andC(q,q′) torque contributions to the final 𝜏 are significantly larger than 𝜉(q,q′,q′′). However, this is no
longer the case for non-rigid robots (cobots) such as Baxter.  Just a brief overlook on the rigid analytical
dynamic  model  of  Baxter  (manufacturer’s  dynamic  model)  compared  with  the  real  Baxter  cobot
exemplified these divergences.

Modeling  𝜉(q,q′,q′′)  becomes  key  in  accurately  associating  the  applied  cobot  torque  values  and its
subsequent  motion.  ξ related cobot  parameters demand for accurate identification methods which are
usually  mathematically  intractable  (Wang  et  al,  2020).  Mathematical  intractability  together  with
parameters  that  tend to  degrade with  age and/or  usage,  prevent  using  parametric  methods for  cobot
dynamic modeling (Polydoros et al, 2015).

Considerations when modelling an elastic robot
Cobot joints are usually flexible with low ratio gearboxes. Gearboxes are to be modeled as if they were
located ahead of the joint deformation. To obtain the dynamic model, the following three assumptions
need to be considered.

Assumption 1: The joint flexibility is small so its effect shall be linear.

Assumption 2: Rotors are modeled as uniform bodies whose mass center shall be located on the rotation
axis. 

Assumption 3: The motors are located in the joints and specifically in a position ahead of the actuated
link.

Cobots usually present elastic springs (as Series Elastic Actuators, SEAs) in between the rotor and the
actuator. Thus, the elasticity in the joint i is modeled by a spring with stiffness Ki > 0, which is torsional
for rotational joints.  Assumption 2 implies that the inertia matrix and the gravity term in the dynamic
model of the robot are independent of the angular position of the motors. Assumption 3 defines the most
common configuration; rotors are solidly attached to the cobot structure, however, the displacement of the
rotors along the structure shall dramatically influence on the movement dynamics.

A  cobot  dynamic  model  with  flexible  joints  requires  twice  the  number  of  state  variables  to  fully
characterize  motors  and  links  than  a  rigid  bodied  robot.  These  position  variables  present  a  similar
dynamic which means that forward/inverse kinematics issues are almost identical to a completely rigid
robot. We also need to define the state variable, the position-vector of the motor prior reduction. In this
framework, the computation of the LaGrange equation becomes more complex, which considers the cobot
as a black box system and computes the system kinetic energy ‘K’ and potential energy ‘P’. The potential
energy is caused by the gravity and the elasticity of the joint. Gravity is related to the position of the link
and mass centers and rotor mass centers which are not coincidental due to Assumption 2. 

Defining a functional  dynamic model  would also demand for sensing the link rotation and the rotor
rotation located prior to the elastic component, which is not available in most cases. Having access to
those variables would imply dismantling the robot and locating new sensors. 
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We  would  also  need  the  elastic  component  constants  (K),  which  the  manufacturer  doesn’t  usually
provide.  The  behavior  of  elastic  components  (as  SEAs)  is  not  ensured  to  be  similar  when  rotating
clockwise or anticlockwise. The K vector is not constant either and varies depending on the operation
conditions (heat, humidity, repetitions...) which implies a non-deterministic dynamic model.

Any analytic dynamic model will also demand for the inertia values for the rotors. Manufactures do not
provide for those values with accuracy, nor the mass center of the rotor with respect to the robot chain.
The presented scenario means that, for cobots, in which the elastic components matter for the dynamic
modeling, half of the LaGrange equation elements cannot be calculated. The analytic dynamic model
considering elastic components is therefore not available. This is what makes the approach challenging
for cobots like this. And this is why approaches requiring these analytics cannot be directly applied.

Force control, understanding the problem (Impedance control)
The end effector force control is critical in practical tasks in which the cobot shall exert a certain force on
a  surface  such  as  polishing,  machining,  assembling,  etc.  During  the  end  effector  contact  with  the
environment, this environment may apply movement constraints to the end effector. Those movement
constraints are referred to as kinematic. The end effector contact with the environment can be classified as
inertial, dissipative, or elastic.

In the presence of an environment-robot end effector contact, considering only a position control would
not be effective (and risky for the robot security). The motion control would indeed suffice only if the
robot's  task  is  always  tracked  as  planned  i.e.,  no  perturbations  or  dynamic  contacts  are  interfering.
Keeping the cobot on track requires a detailed model of the robot (both kinematics and dynamics) and of
the environment too (both geometrical and mechanical analytical models). Due to the unstructured nature
of  the  environment  and  the  elastic  properties  of  cobots’  joints  these  analytic  models  are,  on  most
occasions, unattainable  

The control problem lies in the presence of non-modelled errors in the design of the robot's path. A non-
modelled error can lead to the appearance of a contact force that is applied to the end effector which
eventually forces it to move. When the cobot faces a deviation of the final effector with respect to the
desired path, a classical PD controller does try to reduce that error generated by the contact force by
applying torque to the motors to the point of being able to saturate them or to even break them down. The
more rigid the environment, the more likely the motor saturation or breaking down problems.

The cobot-environment interaction control can be done passively or actively:

Passive  control  (passive  compliance)  is  based  on  the  fact  that  the  interaction  with  the  environment
modifies the trajectory of the end effector. That is to say, that the robot arm itself, the joints or the links
are  elastic  in  some  way.  This  is  a  way  to  protect  both  cobot  and  environment  during  end-effector
environment interactions. The reaction of the passive control is instantaneous but it has to be designed for
each specific application i.e., lack of flexibility. Note that since forces are not measured, passive control
cannot guarantee that the contact forces are accurate enough for the task at hand.

Active control (active compliance). The end effector force guidance is ensured by a control system. The
control system needs feedback access to torque and force values at stake. Note that active compliance
control is slower than passive compliance control and the force/torque action requires minimal passive
control to ensure that the torque and forces at stake are within a certain threshold. 

Cobots such as Sawyer (Sawyer, 2022) or KUKA iiwa (KUKA iiwa, 2022) allow for both interactions at
once combining the passive control instantaneousness (cobots are usually equipped with elastic passive
actuators)  guaranteeing  that  the  controller  contact  forces  are  up  to  the  task.  Nevertheless,  designing
controlling schemes that take advantage of these features is challenging, since it requires accurate robot
model building.
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Indirect Active Control
Active control  can be done through two approaches:  indirect  and direct  active control.  Direct  active
control mechanism requires feedback regarding force and torque value measurements, whereas indirect
active  control  does  not  necessarily  require  a  force  feedback  loop.  Whilst  the  well-known  hybrid
force/motion control belongs to the direct active control family, impedance control belongs to the indirect
active control family.

Impedance Control
Impedance control uses the deviation of the cobot end effector from the desired point as a result of an
interaction with the environment according to an impedance-mechanics paradigm, that is, an impedance
model of a mass-spring-damper system. Therefore, impedance control reacts to environment interactions
(external forces) by generating a compensatory force towards the desired movement, whereas admittance
control,  on  the  contrary,  reacts  to  the  same  environment  interaction  (external  force)  by  imposing  a
deviation onto the desired movements.

In order to implement an impedance control scheme, we need to revisit the robot dynamics since the
cobot dynamic behavior needs to be shaped. More specifically, we need to provide a given response or
mechanical impedance in terms of force exerted to a certain robot-environment contact.  We will also
revisit the mechanical impedance significance using a spring-damped-system i.e., a mass that undergoes
an acceleration being the robot-environment contacts a spring that is damped. The robot dynamic model
and the spring-damped- impedance model will  serve as the basis for the control law to be ultimately
applied

Dynamic: Let us consider a robot that generates torque for its motors and an external force is applied to
its end effector of the robot, the dynamics of the system follows:

M (q ) q' '+C (q ,q ' )q '+g (q )=τ+J a
T (q ) Fa=τ+ τ a

                        (Eq. 4.16)

Where

 JaT(q) is the Analytic Jacobian
 𝜏a is the torque value applied to the robot motors given the external force Fa applied to end 

effector
 M(q) is the inertia matrix containing the masses of the robotic system.
 C(q,q′)q′ contains the Coriolis and centrifugal forces (assuming a non-inertial reference frame)

 g(q) gravity compensation term

Calculating Fa, (observer located at the end effector) via inverting the transposed Jacobian matrix:

M x (q ) x ' '+C x (q ,q ' ) x '+gx (q )=J a
−T (q ) τ+Fa

          (Eq. 4.17)

Where

 M x (q )=J a
−T M (q ) J a

−1 ( q )  is the inertia matrix containing the masses of the robotic system.

 C x (q ,q ' )=J a
−T (q )C (q ,q ' ) J a

−1 (q )−M x (q ) J a (q ) ' J a
−1 (q )  contains the Coriolis and centrifugal 

forces (assuming a non-inertial reference frame)

 gx (q )=J a
−T (q ) g (q )  gravity compensation term

Being the 𝜏 values at each joint:

τ=Ja
T (q ) ( M x (q ) x ' '+C x (q ,q ' ) x '+gx ( q )−Fa)           (Eq. 4.18)
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Mechanical Impedance
Mechanical impedance can be regarded as the ratio between force and speed. This concept is useful in
order to define a control law to be used in impedance control. In a spring-damped-system as in Fig 16, the
impedance will follow (in Laplacian space):

Figure 16: Spring-damped-system

Z i m pe d anc e (s )=
F o r c e (s )

v el o c i t y ( s )
=M s+D+

K
s

          (Eq. 4.19)

Eq. 4.19 will therefore define the robotic response to an external force applied at the end-effector.

Design of an impedance controller
The first step in designing an impedance controller requires imposing a control law to be followed such
as:

M m ( x ' '−xd ' ' )+Dm ( x '−xd ' )+K m ( x−xd )=F a
           (Eq. 4.20)

Where xd is the desired position, usually designed to allow going a little deeper into the robot-
environment contact thus applying a certain Force on the environmental surface contact. The control law 
is established at the end effector, that is, (x,x’,x’’) that needs to be translated into joint torque command 
values. The torque values to be generated at the robot motor side are:

τ=M (q ) J a
−1

(q ) (xd ' '−J a
'

(q ) q '+M m
−1

(Dm ( xd '−x ' )+K m ( xd−x ) ))

+C (q ,q ' ) q'+g (q )+J a
T

(q ) ( M x (q ) Mm
−1

−I ) Fa
          (Eq. 4.21)

From Eq. 4.21, we observe a dependence from the external force applied to the end effector F a that needs
to  be  measured  in  order  to  deploy  impedance  control.  However,  this  expression  can  be  simplified
assuming the apparent inertia equals Cartesian inertia; 

τ=M (q ) J a
−1 (q ) (xd '−J a ' (q ) q' )+C ( q, q ' ) q '+g (q )+J a

T (q ) ( Dm (xd '−x ' )+Km (xd−x ))          (Eq. 4.22)

Eq. 4.22 shows no dependency from external force sensing, we do not need an end-effector sensor to
measure the external force applied to the end effector Fa. 
Note that it is possible to express the control law directly in terms of joint torque values:

τ=M (q ) qd ' '+ X (q ,q ' ) q '+g (q )+D (qd '−q' )+K (qd−q )           (Eq. 4.23)
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Where  K and D are  Km and Dm (end effector reference frame) from the joint reference frame. We also
assumed  M=M(q)  as  aforementioned.  The  external  force  applied  to  the  end  effector  from the  joint
reference frame perspective would be:

M (q ) (q' '−qd ' ' )+D (q'−qd ' )+K (q−qd )=τ a
          (Eq. 4.24)

Coefficient design
Previously the design of Mm was assumed (the apparent inertia) equal to the Cartesian inertia; Mm=Mx(q)
to simplify the control scheme, however the value of Km and Dm needs to be determined. Their values are
usually chosen taking into account the following:

• In Cartesian directions (i) where contact is foreseen, a low (Km, i) value shall be chosen. 

• In the collision-free directions  (j),  high (Km,  j) is advisable to make the position tracking on that  j
direction good.

• The (Dm, i) coefficients are used to experimentally model the transients.

As aforementioned, the analytic Jacobean needs to be available to accurately deploy impedance control
(see control law). Cobot SEAs, whose inner parameters are to be represented in the analytic Jacobian, are
commonly difficult to model due to their elastic components. These elastic components make the analytic
Jacobian  mathematically  intractable,  thus  requiring  discrete  Jacobian  approximation  when  possible.
Impedance control accuracy and stability will mainly be applicable to rigid-body robots.

Note that impedance control only takes into account the contact forces at the robot end effector. Any
other contact made with any robotic link is not accounted for, which may drive the robot to instability, not
to mention the safety risks. A controller able to learn the robot's dynamic response to external forces over
the entire robotic kinematic chain is required. 

 Machine Learning (ML)-dynamic identification
The classical methods for the analysis of a dynamic model of a robot are based either on the Lagrange
(De Luca & Siciliano, 1991) or Newton-Euler equations (Buondonno & De Luca, 2015). These analytical
methods  involve  the  characterization  of  the  physical  parameters  of  the  robot  for  its  correct
implementation. By simplifying the model, while remaining complex, it is possible to model the robot as
a  rigid  body,  omitting  frictions  and  elastic  constants  whose  effect  may be  minor  depending on  the
mechanical configuration of the robot. This approximation usually works well for robot models with rigid
joints; however, for robots with elastic joints (as cobots), the approximation is not accurate, and it  is
necessary to incorporate more complex equations that allow describing the dynamics of these elastic
components with their corresponding characterization (Buondonno & De Luca, 2015).

Therefore,  a  good  performance  of  these  analytical  models  requires  the  identification  and  accurate
characterization of the parameters of the robot components, including those phenomena that are nonlinear
or stochastic. These phenomena are usually excluded from any mathematical description of the dynamics
of a robot, even with highly complex analytical models. This limitation has motivated several proposals in
recent years to obtain a dynamic model closer to the real one using Machine Learning (ML).

Different strategies have been proposed to generate dynamic robot models with artificial neural networks
(ANNs). In (Chen et al, 2011), unidirectional and bidirectional recurrent neural networks (RNN) are used
to learn the robot model being driven through position control; however, they do not obtain a dynamic
model of the robot since they do not relate robot displacements to the applied torques. In contrast, in
(Akyuz et  al,  2011)  they developed an inverse  dynamic model  with unidirectional  RNNs capable of
estimating torques from a given displacement for a robot with six degrees of freedom. Similarly, in (De
Luca & Siciliano, 1991) they compare different RNN models studying their advantages in learning direct
and inverse  dynamics  of  robots  with  rigid  joints.  A  hybrid  approach to  this  problem has  also  been
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attempted, which consists of combining an analytical rigid robot dynamics model with a deep learning
(DL) model (semiparametric models) (Fitzgerald, 2013). Note that in all these cases rigid robots, of lower
dynamic complexity, have been used, and in no case have these techniques been applied to robots with
elastic joints (cobots) with a priori more complex dynamics. This is important because cobots integrating
elastic components are inherently safer but challenging for accurate torque-based control due to their
complex dynamics. 

ML dynamic modeling using recurrent neural networks (RNNs)
ML in  cobotic  control  is  required  for  dynamic  modeling.  Data  gathering  allows  for  dynamic  cobot
modeling, either forward or inverse dynamics:

Forward dynamics receives a set given by (𝜏, xt, xt’, xt’’) (Among any other useful information) where 𝜏
is  the  set  of  torques  applied  on  each  joint  and  (xt,  xt’,  xt’’) are  the  current  position,  velocity  and
acceleration of the end-effector. With this information, the goal of dynamic modeling is to predict (xt+1,xt+1’, xt+1’’), that is, the next position of the effector.

Inverse dynamics receives both the current state of the end-effector and its desired future state and then it
tries to predict the set of torques 𝜏 that are to be applied to reach that desired state.

Usually, these dynamic models are built using a specific type of artificial neural network (ANN) called
recurrent neural networks (RNNs). RNNs efficiently work on sequential data, also known as time series,
and they use information of past states to calculate the current and future outputs. This makes them ideal
to work on motion/torque control since past applied torque values are known to affect inertia on the robot
limbs, and therefore, to the current and future state of the cobot movement.

RNN can have a single input, i.e., using the current state to predict the torque values of the next t future
time steps, or a single output, i.e., using the past t states to predict the next position of the end effector.

Since  real  world  movements  are  usually  a  continuous  motion,  they  need  to  be  discretized.  This
discretization is done by defining a time-step  𝛿 and using  xt-1 to calculate the speed  (x’),  and  xt-2 to
calculate the acceleration (x’’) of the end effector. As many steps as desired could be included within the
model but three (xt, xt-1, xt-2) is the minimum number recommended in order to be able to estimate the
speed and acceleration of the effector or joint (Centurelli et al, 2022).

RNNs are usually built using “cells” which act as layers on an ANN. Some of the more popular RNN
cells  used  for  time  series  modeling  are:  a)  Long  Short-Term  Memory  (LTSM)  (Hochreiter  &
Schmidhuber, 1997) and b) Gated Recurrent Unit (GRU) (Cho et al, 2014). 

There exist programming “commodities” that facilitate the design and development of RNNs, such as
TensorFlow (Abadi et al,  2015) or Pytorch (Paszke et al,  2019). These libraries allow for a modular
design of deep ANNs and are extensively used in many fields.  Although they usually run-on high-level
programming languages like python and they are designed to work on the cloud, they can be adapted to
edge-computing  platforms.  In  order  to  bring  these  complex  models  from  cloud  computing  to  edge
computing many tools are available, like ONNX or Torch-Script. 

ML-based control. Controllers based on Reinforcement learning (RL)
Reinforcement learning (RL) is an ANN subfield of machine learning (ML), in which an optimal control
strategy is defined through trial and error learning whose performance is given by a set of rewards and
punishments,  i.e.,  the  policy,  to  be  assigned  based  on  the  control  behavior  (accuracy,  velocity,
compliance, etc). RL tries to replicate the human and animal motor learning process when moving and it
is well suited on exploratory motor tasks that require good generalization to achieve high performance in
terms of precision, velocity or compliance. This generalization and exploration capacities make RL useful
when working on finding an optimal torque control solution for driving a cobot. 
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The RL working principles in setting a torque cobot controller are based on torque-operating a cobot
repeating a  set  of  motor  tasks  (try  and error  process)  and subsequently on giving the RL controller
rewards based on the policy followed, i.e., performance in terms of accuracy, velocity, compliance. 

The RL framework is based on the Markov Decision Process (MDP) which describes interaction between
the agent and its environment. This framework consists of a 5-tuple (S,A,Pa,Ra,𝛾) where:

• S is  the  state  space. Each  state  s is  usually  represented by  a  vector  containing the relevant
information for the controller (e.g., effector and joints positions, velocities and torques).

• A is the  action space. Each action  a corresponds to the output of the controller, usually in the
form of the torques to be applied by each joint.

• Pa(s,s′) is the probability that action a takes the agent from state s to state s’.
• Ra(s,s′) is  the  reward  obtained  when  successfully  transitioning  from  state  s to  state  s’.  As

mentioned above, this function represents how well the agent is performing the task. In most
cases  this  function  is  based  on  the  cartesian  distance  to  the  objective  path,  but  many other
alternatives exist.  Building a good reward function which gives the agent  constant  or  regular
feedback in order to improve its policy is key to creating a successful RL model.

• 𝛾 is the discount factor that weighs how important future rewards are. In some cases, this discount
factor is disregarded in favor of models with long term goals. If this factor is high the agent will
act in a greedy manner and pursue only short-term rewards.

Once the architecture of the model is defined, an optimization algorithm must be established. An example
can be seen in (Centurelli et al, 2022) where Trust Region Policy Optimization is used to train a RNN to
work as an inverse dynamic model of the system. They also use a forward dynamic model to simulate the
response of the cobot instead of using real data. 

Adapting RL to cobot control poses several challenges. An RL controller, like any other ANN approach,
will be as good as the training data set being used. Gathering the RL training data becomes pivotal to
tackle control challenges such as the accountability for the wear and tear of the cobot joints or their inner
elastic  component.  Offline  RL  ANN  training  is  advisable  due  to  real-time constraints  and,  more
importantly,  preservation of  the  cobots security.  RL trial  and error training is  therefore adequate  for
simulation modeling prior to its deployment. Simulations mostly make use of rigid-body dynamic models
which makes the sim- to-real transfer critical in the RL performance in a real environment. 

There are infinite ways of covering the working space by the cobot operation, finding the subset of data
derived from the  robot  operations  that  achieve a  reward,  and  subsequently cause the  model  to  start
learning, may require high-capacity, compute-intensive requirements. This computational overload has
motivated using imitation learning (Fang et al, 2019) (what a human being shall do) to accelerate training.
Once the imitated subset of data training is provided, RL can optimize control over that subset in terms of
the policy established beforehand. Note that the main disadvantage of this speeding up of the RL learning
process lies in the local RL learning optimization to a particular cobot movement as consequence of the
reduction of the RL search space.

Controllers based on Supervised learning
Supervised learning (SL) is a subfield of ML, in which labeled data (data for which we know the expected
output) is used to train a model by teaching it with the appropriate outputs for each input in the dataset.
SL is widely used in all fields due to its efficiency and learning capabilities. Training is usually limited by
the dataset size, due to the high cost of labeling big amounts of data. 
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In the control field this limitation can be eased by using the sensors of the cobot and simulations to easily
gather  large  quantities  of  data.  Controllers  of  this  kind  typically  use  the  desired  path  as  labels  and
measure their error as a function of the distance between the desired trajectory and the obtained trajectory.

Imitation learning can be regarded as a form of supervised learning. In this case, a target trajectory is
defined by a human demonstration, then a SL controller  tries to replicate that  same path as close as
possible to the original, and it uses the distance between the followed and the target paths as an estimation
of the error in the model. 

Note that by only using SL, the controller shall be as good as the data provided (target trajectory), and,
unlike RL, it lacks the ability to find new optimal paths or to further optimize the given one. However,
this limitation is assumed provided that faster and easier learning can be achieved. 

As with RL, most controllers use RNNs, although other ANN types can also be used for complementary
tasks.  The error function of a RNN is usually implemented using the Euclidean distance of the end-
effector to the desired position; however, this function can be implemented using other distance metrics
i.e, Manhattan distance, joint distance, etc. Actually, it is also common to measure the error on each joint
instead of the effector’s error, however, the Euclidean distance usually offers a closer estimation of the
global performance of the model.

Note that, a controller architecture deployment for a cobot may demand a combination of both, RL and
SL controllers in order to cope with the possible dynamic perturbation, sudden interaction forces or any
unpredicted event that may occur (SL) or may need to be learned (RL) in a non-structured scenario.

Iterative Learning Control
Iterative Learning Control (ILC) is a learning control method different from machine learning, usually
simpler and easier  to  tune but  only applicable  in  scenarios  of  repetitive  tasks.  ILC can be generally
divided in two approaches: Frequency-domain ILC and Norm-optimal ILC (Bristow et al, 2006). Both
methods rely on performing a number of trials, using (feedback and) feedforward, in which the error is
observed. This error is passed through a learning filter in order to obtain a feedforward signal for the next
trial. 

 In Frequency-domain ILC, the learning filter is given by the approximate inverse of the process
sensitivity (for closed-loop) or the approximate inverse of the plant (for open-loop). Even if this
model  is  imperfect,  excellent  performance can be achieved after a small  number of iterations.
However, if the model quality is too low, the ILC scheme might become unstable in the trial-
domain. This can be overcome by introducing a Q-filter (chosen by the user, e.g, a lowpass-filter)
to turn off learning at certain frequencies (Bristow et al, 2006). This facilitates convergence at the
cost of a larger final error. The user should be aware that the inverse of a strictly proper, potential
non-minimum  phase  system,  can  lead  to  an  unstable  and  non-causal  learning  filter.  Stable
inversion techniques exist to deal with this issue (Blanken et al, 2017). 

 In norm-optimal ILC, a cost function is posed in the time-domain for a finite-length task. Instead
of  filters  expressed  as  discrete-time  transfer  functions  (or  difference  equations),  convolution
matrices are used to express models. The cost function is defined to penalize the expected error at
the next trial, given the data of the previous trial, and it is quadratic in the next feedforward signal
(the design variables). It can be solved analytically (Bristow et al, 2006) for the unconstrained case
or using a convex solver for the constrained case (Mishra et al, 2011).

4.2.3.3 Progress beyond the SoA  

The expected outcomes of the project are the following:
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Exploring different schemes for acquiring the dynamic cobot models
a) Off-line model building using explorative movements with the goal data-gathering. This data-set is
stored relating torque-movement, i.e., cartesian and or multijoin movement. ML techniques can be
applied in order to acquire the robot dynamic model. Eventually the model can be applied for cobotic
torque-control tasks in later operation stages. 

b) On-line model building in which the cobot models are refined during operation so that the torque-
control scheme can adapt automatically to changes in the operation conditions or the environment.

Building inverse and forward dynamic models
The planned work will explore how to efficiently capture accurate inverse dynamic models of cobots.
We  will  explore  how  to  acquire  the  models  within  a  specific  “calibration  stage”  (robot  data
acquisition  stage  in  off-line  model  building)  and  then  apply  torque-control  algorithms  able  to
efficiently use of this accurate dynamic model. 

We will also explore how to acquire forward dynamic models of cobots to be used within control
loops to compensate for delays in the control loop and also to detect deviations between the robot
model and the actual robotic platform (early failure detection).

Accelerate learning
We will explore how to accelerate the learning phases by better focusing the learning process. For
instance, we will use adversarial neural networks (Lee et al, 2021) as well as parameter optimization
techniques (such as evolutionary algorithms (Ayala &  dos Santos 2012)) to allow optimal control
actions and data to be learned during the training phases in simulation that ultimately accelerate the
actual deployment of the physical torque control solution.

We will also explore how to take advantage of analytical rough models (such as rigid body dynamic
models) to accelerate model building processes using robot simulators and how to overcome the sim-
to-real  gap  with  incremental  learning  with  the  robot  on  the  loop  (hardware  on  the  loop)  on  a
subsequent refining stage. This is key, since simulation allows massive exploration of the operation
space  without  degrading  the  robot  performance  nor  exposing  the  robot  to  scenarios  (such  as
operations close to singularities) that may lead to breakdown or failures. We will explore how the
models  can  be  partially  captured  using  simplified  simulations  and  then  refined  using  the  actual
robotic platform with incremental learning techniques. In this second stage with hardware-in-the-loop
(HIL) the security of the robot will be guaranteed thanks to the massive exploration done with the
simulation tools. 

Integrating machine learning into the control loop
The  project  will  explore  how  to  use  different  ML  techniques  (such  as  supervised  learning,
reinforcement learning) for capturing the models and applying them on smart control algorithms. This
requires  research  also  on  how  to  efficiently  integrate  the  captured  models  in  the  control  loop.
Different machine learning techniques (for instance supervised learning and reinforcement learning)
can be integrated complementary within the control loop.
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4.2.3.4 Requirements  

ID Requirement Comments
R16-
D4.1

Compliant  applications  must  use  torque-
based control schemes

Safety motivates the torque to be applied to
the effectors to be constrained. Thus, torque-
based control schemes that provide the actual
torque to be applied are key for safe human-
robot  interactions.  Other  control  schemes
(position  based)  require  specific  safety
mechanisms  (e.g.,  fast  sampling  and  stop
reaction mechanisms)

R17-
D4.1

Accurate  dynamic  models  must  be
automatically captured

 Data-driven model building is key. Analytic
dynamic  models  of  cobots  are  not  accurate.
Furthermore,  the  robot’s  dynamics  may
change  along  operation  since  these  elastic
components  may  behave  differently  along
operation cycles or the robot life cycle

R18-
D4.1

Smart  control  algorithms  must  integrate
models  and  adaptation  mechanisms  within
the control loop.

R19-
D4.1

Control  algorithms must  be  robust  to
modelling errors

R20-
D4.1

Iterative techniques must be able to achieve
good  performance  even  in  the  presence  of
trial-variant disturbances

R21-
D4.1

Stability of the system in both training and
tests  must  be  demonstrable,  i.e,  it  must  be
safe

R22-
D4.1

Techniques  in  machine learning,  applied to
control,  must  have  interpretable  hyper-
parameters such that the user knows what to
expect when changing the values

R23-
D4.1

Real-time  algorithms  must  be  sufficiently
resource-efficient  to  be  applicable  to
hardware that is standard in industry

Table 4: Compliant control requirements

4.2.4 Disturbance Observer for Friction Compensation

4.2.4.1 Introduction  

Recent advances in Computer Numerical Control (CNC) machining processes have brought fundamental
improvements  such  as  the  complete  automation  of  the  machining  process  and  the  programming
procedure,  allowing  increased  accuracy  and  surface  quality  to  be  achieved.  However,  the  use  of
conventional CNC machines poses important limitations such as a restricted working area, the shapes that
can be obtained and the economic cost of the equipment. 

For certain applications, robots could replace the functionalities of CNC machines and become a real
alternative to them. The advantages offered by robotic technology are a larger workspace, flexibility to
apply them in different manufacturing processes or even auxiliary operations, and at a considerably lower
cost than a CNC machine. However, the limitations of robots in terms of absolute precision and rigidity
(Pan et al, 2006) are restricting their use in industrial applications. In recent years, work is being done to
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improve the accuracy of robots to overcome this problem, both by using real-time process control systems
(Denkena & Deker, 2015) and by developing simulation models to generate compensated trajectories
(Karim et al, 2017).

One of the requirements for robots to be used in manufacturing processes such as machining is the need
for  a control  system that  can be fed from trajectories  generated by CAM software,  that  can resolve
kinematics and interpolate trajectories at high frequency, adapt motion dynamics and that can synchronise
movements with additional axes (Altintas, 2012).  

The last few years have seen a change in trend and some industrial robot manufacturers, such as KUKA,
are  now offering CNC modules  in  their  controllers  for  machining applications  (KUKA.CNC,  2022).
Another strategy not offered by all robot manufacturers but which is starting to be seen more and more is
the  possibility  of  using  conventional  controllers  to  control  robots,  both  directly  by  attacking  the
controllers and indirectly by attacking the position/speed control loops of the robot controller (COMAU:
Power System & Products, 2022). 

In CNC machine tools, this variable is the position signal that generates a trajectory that must be followed
during cutting. Large manufacturers of control systems continue to provide a cascade P-PI solution for
their machine tools, due to its robustness, low cost, and relatively simple tuning rules (Sun et al, 2018).
Many model-based control strategies have been explored, such as model predictive control (Serkies &
Szabat, 2013), and robust control (Ponce et al, 2015). 

Although there are solutions on the market for controlling industrial robots with the CNC, there is no
generic approach available.  In order to find a standard solution,  the necessary functionalities such as
kinematics, trajectory generation and control loops will be integrated into the CNC itself, and therefore
will be common to all robots. To mitigate the dynamic effects of the robots, MIMO control strategies will
be implemented, which will have to take into account friction and backlash compensations.  

Friction is a well know nonlinear phenomenon in contact physics. Research carried out in this area shows
that there are two states in the friction process: a sticking (or pre-sliding) state and the sliding state. In the
sticking regime, the roughness (asperity) of the contact surfaces creates a friction force that is dependent
on the micro-displacement between both contact surfaces. The roughness elements of the surfaces are
deformed like  nonlinear  elastic  elements,  creating  a  sticking  force  on  the  surfaces.  When this  force
exceeds a threshold, the surfaces start sliding, and the friction force behaves dependant on the sliding
velocity.

The friction  causes  significant  problems in mechatronics  systems:  static  errors,  stick-slip,  etc.  These
problems are no compensated by the conventional  (PID based) nested current,  velocity,  and position
control loops. Precision machining needs the design of additional control strategies to compensate the
friction phenomenon.

4.2.4.2 State of the art  

The friction is an important phenomenon that appears in motion control systems, which can be defined as
the tangential reaction force between two surfaces in contact that opposes the relative motion between
them.  Many physical  effects  are  at  the  origin of  this  phenomenon:  elastic  and  plastic  deformations,
material properties, etc.

It is necessary to understand the process of friction, to reduce its adverse effect in motion control. For
this, several friction models have been proposed over the last years (detailed information about friction
models is available in Olsson et al, 1998; Åström, 1996; van Geffen, 2009). These models can be divided
in static and dynamic models.
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Static friction models
They are the simplest models and describe the friction as a function of the relative velocity of the sliding
surfaces:

FC=μ FN sgn ( v )   (Eq. 4.25)

Where 𝜇 is the friction coefficient, FN the normal load and v is the relative velocity. This model is called
Coulomb friction model.

One problem of this model is that it does not capture the friction process when the relative velocity is
zero.  A  simple  way  to  capture  this  stiction  behaviour  is  augmenting  the  Coulomb  friction  model
specifying the friction force at zero velocity.

F=Fe                  if v=0 and Fe<FsF=Fs sgn(Fe)   if v=0 and Fe≥Fs (Eq. 4.26)

Where Fe is the applied force and Fs the stiction force.

More sophisticated models are also used to describe the dependency of the friction force with the sliding
velocity. Among them, the most popular is the Stribeck curve:

F v=FC+ (FS−FC )⋅e
−( v

v⋅s )
δs

(Eq. 4.27)

Where vs is the Stribeck velocity and δ s    the Stribeck shape factor.

Some additional  examples of  static friction models are  the  Karnopp model  (Karnopp,  1985) and the
Armstrong’s model (Armstrong-Hélouvry et al, 1994).

Dynamic friction models
The  dynamic  friction  models  are  obtained  considering  that  the  the  friction  phenomenon is  indeed a
dynamic  process.  The  most  popular  models  are  the  Dahl’s  model  (Dahl,  1968),  the  LuGre  model
(Canudas et al, 1995) and the GMS model (Al-Bender et al, 2004).

The Dahl’s friction model is an extension of the Coulomb friction model, but it produces a smoother
transition around zero velocity. The frictional hysteresis at pre-sliding state is approximated by a 1st order
differential equation of the position depending only on the sign of the relative velocity. The friction force
is given by:

d F f

d t
=σ (v−

F f

FC

(v )) (Eq. 4.28)

Where 𝜎 is the contact stiffness.

The Dahl’s friction model has been widely used, but it exhibits some drawbacks: it does not describe stick
slip motion and it does not capture the Stribeck effect.

A cooperation between the Lund and Grenoble universities has developed the LuGre friction model. This
model is the result of combining the pre-sliding behaviour described in the Dahl’s model with the sliding
regime described by the Stribeck curve.

The friction force is the sum of three components, given as a function of a state variable z and the relative
velocity v:
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F f=σ 0⋅z+σ 1
d z
d t

+σ 2⋅v (Eq. 4.29)

Where 𝜎0 is the contact stiffness, 𝜎1 is the micro-viscous friction coefficient and 𝜎2 is the viscous friction
coefficient. The state variable z represents the deflection of the surface asperities (elastic springs) and is
related to the bristle interpretation of friction:

d z
d t

=v−σ 0
v

s ( v )
z (Eq. 4.30)

Where s(v) is the Stribeck curve described previously.

In the GMS friction model, the friction force is calculated as the sum of all the forces of the elementary
elasto-slip elements and the viscous friction force:

F f=∑i=1

n
Fi+σ2⋅v (Eq. 4.31)

Where Fi is the force in each elasto-slip element and σ 2⋅v  is the viscous component. The force in each

elasto-slip element depends on its movement state:

 If the elementary model is sticking, the force is calculated as:

d F i

d t
=k i⋅v (Eq. 4.32)

Where ki is the stiffness coefficient of the elasto-slip element.

 If the elementary model is slipping, the force is calculated according to:

d F i

d t
=s gn (v )⋅C(α i−

Fi

s (v ) ) (Eq. 4.33)

Where  C is  the  attraction parameter  that  determines  the  attraction  of  the  total  friction force
towards the Stribeck curve in sliding, and 𝛼i is the fractional parameter corresponding to the i-th
elasto-slip element.

The elementary model is sticking until  Fi>𝛼i·s(v). The elementary model is slipping until the velocity
crosses zero.

Other friction models can also be found in the literature (Olsson et al, 1998). Some examples are the
Bristle Model, the Reset Integrator Model, models by Bliman and Sorine, model for lubricated contacts,
the Leuven Model, etc.

Friction Compensation Methods
Several friction compensation methods can be found in the literature (Olsson et al, 1998; Åström, 1996;
van Geffen, 2009), which can be divided in the non-model-based and model-based techniques. Among
the first, may be mentioned the impulsive control, based on applying small impacts, dithering, which
consist of adding high frequency signals in the control, Iterative Learning Control (ILC) for repetitive
trajectories and strategies based on friction estimators.
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On the other hand, regarding the model-based techniques, can be further divided into feedforward and
feedback solutions. For this it is necessary to have a good friction model. This model is used to estimate
the friction force acting on the system, and the control signal is added with an additional component that
compensates this estimated friction value.

For the model-based friction compensation techniques, the problem does not lie in the friction model, but
in the characterization of the different parameters involved in this friction model. Purpose-built testing
must be performed for this, which can become labour-intensive and time-consuming task. Examples of
the estimation of the parameters of a friction model, specifically the parameters of a GMS friction model,
are available in (Grami & Gharbia, 2017; Grami & Fareh, 2018).

4.2.4.3 Progress beyond the SoA  

For the reasons presented above, the selected option in this work will be to design a friction compensation
strategy relying on a non-model-based technique, specifically a solution based on a model-free friction
estimator (Ray et al, 2001; Lampaert et al, 2004).

The main idea to overcome the problems caused by the friction phenomenon is to add an additional term
to the conventional system control command signal. This additional term is precisely the estimate of the
friction force:

uc o mma nd=uc o nt ro l+α⋅F f r i c t i o n+β
d F f r i c t i on

d t (Eq. 4.34)

where ucommand is the total action on the system, ucontrol is the command from the closed control loop, 𝛼 and
𝛽 are gains and Ffriction is the estimated friction force component.

The solutions proposed in the technical papers usually rely on the compensation of the estimated friction
force. In this new approach, the derivative of this estimation will also be added, to guarantee a faster
action on the friction compensation.

A model-free friction estimator (model-free in the sense that it does not depend on any specific friction
model: Dahl, LuGre, GMS, etc.) will be developed to estimate the friction force.

In the literature, the friction observers are usually based on 1 d.o.f. models. In the present work, a 2 d.o.f.
will be used. This will allow to obtain a better representation of the real system, and consequently, to
obtain a better estimate of the friction force. Remember that, from the control design point of view, a
good  approximation  of  a  real  system  can  be  obtained  using  a  2-mass  system,  if  the  dynamic
characteristics  of  the  simplified model  matches  adequately  the  dynamic characteristics  of  the  lowest
resonance of the system.

The first  step  in  the  development  of  the  friction force observer  is  to  approximate  real  system by a
simplified two-mass model, as in the figure:
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Figure 17: Two-mass system model.

Where M1 is the drive-side mass, M2 is the load-side mass, K, C, are the stiffness and damping of the
most  flexible  element  between drive and load,  and u,  y  are  the  displacements of  the drive and load
respectively. Drive-side and load-side masses also include the masses of all the transmission elements
placed at the drive and load sides respectively of the main flexibility in the transmission chain.

The usual second-order dynamic force equilibrium equation can be described in state-space form using
modal variables:

{q '}=[ A ]{q}+[B ]{FP }
(Eq. 4.35)

where {q} is the state vector (modal variables), A is the state matrix, B is the input matrix, and F, P are the
force exerted by the drive and the friction force on the load respectively.

Although  the  force  exerted  by  the  drive  is  known,  the  friction  force  value  remains  unknown.  The
arrangement  shown in  the  previous  equation  is  not  actually  applicable.  For  this,  a  non-model-based
friction  force  estimator  will  be  built.  The  system  state  (the  modal  variables  and  their  first  order
derivatives) will be augmented with the friction force component and its derivatives. This augmented
state will be estimated using the Kalman Filter (KF) technique.

The friction force can be modelled as a random walk of any order. The simplest case is to use a first order
model, where the friction is considered as a random constant. Using higher order models enables a better
response of the friction estimate in face of transients. In this case, a second-order random walk model will
be used. It is still a simple model and provides acceptable results. The structure is as follows:

{ P'
P ' ' }=[0 1

0 0] { P
P' } (Eq. 4.36)

The state-space representation of the second-order dynamic shown above is augmented with this second-
order random walk model. In this way, the only input to the system state-space is the force exerted by the
drive, F, which is known.

A  state  observer  will  be  designed  to  estimate  this  augmented  state,  and  hence  the  friction  force
perturbation. For this, the usually available signals will be used: the velocity of the drive,  u., and the
position of the load, y. Additionally, and to respond better to transients, the acceleration signal on the
load, y’’, (easily measured with an accelerometer) will also be used.

The observer  gain,  K,  will  be  calculated using  the KF technique.  To obtain  a  compromise  between
robustness  and  good  sensitivity  to  transients,  process  noise  covariance,  R,  and  measurement  noise
covariance Q, will be carefully selected. Once Q and R are defined, the observer gain K can be computed
offline, and only the state propagation and update equations are implemented in real time. Next figure
shows the structure of the system with the controller and the friction estimator:

51 



IMOCO4.E – 101007311
D4.1 Requirements for advanced motion control (first iteration) Public (PU)

Figure 18: System structure with controller and friction estimator.

4.2.4.4 Requirements  

ID Requirement Comments
R24-
D4.1

Friction compensation must be added to the
control  action  of  the  applied  controller
(current control loop input)

R25-
D4.1

Friction compensation must be executed at a
high sampling frequency

Minimum sampling of 1 kHz

R26-
D4.1

Although characterisation  of  friction  is  not
required, a two-mass model of the controlled
system is required

Table 5: Friction compensation requirements

4.2.5 MPC Control

4.2.5.1 Introduction  

The  Model-based  Predictive  Control  (MPC)  methodology  is  also  referred  to  as  the  moving  horizon
control  or  the  receding  horizon  control  (Mayne,  2014).  The  MPC is  constructed  using  control  and
optimization tools. In the MPC approach, the current control action is computed on-line rather than using
a pre-computed off-line control law. A model predictive controller uses, at each sampling instant, the
plant's  current  input  and output  measurements,  the plant's  current  state,  and the plant's  model.  Some
performance index defined by the user is optimized (restricted to constraints) over a sequence of future
known inputs. The result of this optimization is used to:
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 Calculate, over a finite horizon, a future control sequence that optimizes a given performance
index and satisfies constraints on the control action.

 Use the first control in the sequence as the plant’s input.

Figure 19: Schematics of MPC.

Mathematically, given a usual discrete-time state-space representation of a time-invariant linear system:

X k+1= A X k+B U k

Y k=C X k

(Eq. 4.37)

Where X is the state vector, U the input vector, and Y the measured variables, the constrained linear MPC
consists of solving the next optimal control problem (quadratic performance index):

min  (Y N '⋅P⋅Y N+∑k=0

N−1

(Y k '⋅Q⋅Y k+U k '⋅R⋅U k ))

with constraints : umi n≤uk≤uma x

                                 ymi n≤ yk≤ ym a x

(Eq. 4.38)

Where P, Q, R, are weighting matrices. The state-space of the system is used as prediction model:

xk= Ak x0+∑ j=0

k−1
A j B uk−1− j (Eq. 4.39)

N represents the optimization horizon, and only the first value of the calculated control sequence is used
each time.

The main difference with the usual PID control is that the PID control builds the control action based on
current and past data, whilst the MPC control additionally uses future reference and known disturbances
to the system. According to (Schwenzer et al, 2021), the classical control can suit perfectly 90% of all the
control  problems.  Only for the remaining 10% fraction advanced control  solutions like the MPC are
necessary. The main drawback of the MPC strategy is that a real-time optimization problem must be
solved repeatedly, resulting in a higher computational cost compared with the classical PID control. But
the use of model-based optimization, the inclusion of future information and the flexibility of considering
restrictions makes the MPC an attractive approach for industrial applications.
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4.2.5.2 State of the art  

Regarding the industrial applications, MPC has been notably used in process industry, see (Schwenzer et
al, 2021; Abdulrahman et al, 2020). MPC has become a standard approach to manage process industry,
characterized by complex multi-variable systems with time delays.

Linear MPC strategies are used in processes with weak nonlinearity, such as refining and petrochemical
process. On the other hand, Nonlinear MPC is used in processes with high nonlinearity, such as paper
manufacturing and chemicals. But the high optimization time consumptions caused by the complexity of
the  nonlinear  process,  makes  the  Nonlinear  MPC more  suitable  for  processes  with  slow dynamics.
Additionally, the presence of hybrid systems, represents an additional problem.

An approach to face nonlinear systems is the utilization of linear models. For this, linear models are
obtained in the plant  operation points.  The great  benefit  of  using linear models is  that when using a
quadratic objective function, the resulting problem is a convex problem.

Considering the industrial process control, MPC is usually integrated as a high-level supervisory control
of classic PID loops in a cascaded control structure. The nonlinear models are usually linearized, and the
optimization calculation times varies from seconds up to few hours depending on the process.

In the  last  decade,  the use  of  MPC has  raised in building climate.  The aim is to reduce the energy
consumption keeping thermal comfort (Heating, Ventilation and Air Conditioning, HVAC). MPC is a
powerful  instrument  that  benefits  the  available  weather  forecasts.  The  main  problem  for  HVAC
applications is the high modelling effort needed to correctly model a building and the energy generation
and distribution systems.

Another field of application are the renewable energies. Usual objectives in wind turbines are the power
regulation and load reduction. To apply an MPC structure, the knowledge of incoming wind is necessary:
wind speed observers or measurement devices (Lidar) are used for this.

Other  field of  application  of  MPC is  power  electronics.  As  a  difference of  process  industry,  power
electronics is characterized by very fast dynamics, in the range of ms. Hence, relatively simple models
and short horizons are needed. In some cases, online optimization is removed and explicit MPC is used
(optimization problem is solved in advance for a variety of cases). Examples of application are the control
of electrical AC drives, the control of power converters and rectifiers, direct torque control of electrical
drives, etc.

There are many other areas where MPC is also emerging: robotics, cranes, and manufacturing. Regarding
manufacturing, path tracking is one of the objectives of the MPC (Stephens et al, 2013). Other objectives
include, for example, the reduction of the friction effect (Rodriguez-Ayerbe et al, 2014) or for reduction
of power consumption peaks in machine tools with periodic behaviour (Ubach-Pallas, 2017).

Cascaded PID control  structures  are  the  most  usual  approach to  control  mechatronic  systems.  These
control structures rely only in past and current data.  As an alternative solution, MPC structure can be
beneficial in exploiting the prior knowledge of the trajectory. Some attempts have been performed to
implement an MPC for trajectory tracking in DSDs, see for example (Stephens et al, 2013 ), or model
predictive  contouring  (Khalick  &  Uchyiama,  2010;  Lam  et  al,  2011).  The  main  limitation  is  the
computational effort needed to solve online the optimization problem and the fast update rates used in
DSDs.
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Figure 20: Schematics of control structures for DSDs.

In the last few years, research has been directed to develop fast MPC algorithms intended for embedded
implementations. With the aim of reducing the time taken in the optimization problem, several solutions
have  been  analysed  in  the  literature:  exploit  the  MPC  structure  tailoring  the  optimization  process,
multiplex the optimization procedure, development of the Economic MPC (EMPC) (Angeli & Müller,
2018), etc.

Another  solution  proposed  in  the  literature  is  to  perform  the  optimization  offline  (explicit  solution
approach) (Bemporad et al, 2002). The resulting gain-scheduled solution needs to interpolate the control
action depending on the state vector and desired future output at each time step. This can be cumbersome
depending on the number of states variables. Binary storage and search approaches have also proposed to
reduce  this  storage  and time consumption.  Anyway,  the  memory requirements  of  this  approach can
become prohibitive for medium to large-sized systems and/or problems involving many constraints.

Other option is to use efficient algorithms capable of solving online the optimization problem specifically
tailored to embedded systems. In this way, Krupa et al. (2021) propose a sparse, low-memory footprint
optimization  algorithm  for  the  implementation  of  the  model  predictive  control  (MPC)  for  tracking
formulation in embedded systems. This solution is dedicated for the implementation of these controllers
in devices with very limited computational and memory resources.

4.2.5.3 Progress beyond SoA  

Implementation of the MPC in real time for set-point tracking and specially for trajectory tracking is
difficult. Hence, in this work an MPC for trajectory tracking will be designed, with the main objective of
its industrial applicability. A very simple and robust solution is desired. Next aspects will be analysed in
the proposed solution:

 MPC requires toolchains with some parts that are available off the shelf,  but a complete and
robust MPC solution requires a highly-integrated toolchain. Such toolchain will be developed,
making a MPC controller building block that can substitute PID building blocks with minimal
effort.  The  toolchain  will  consist  of  tools  for  modelling,  solving,  coordinating,  designing,
simulating, deploying, analysing, monitoring the (components) of the MPC controller.

 A simple 2 d.o.f. model will be used to represent the dynamics. This simple model must match
adequately the dynamic characteristics of the lowest resonance. Drive-side and load-side masses
will also include the masses of all the transmission elements placed at the drive and load sides
respectively of the main flexibility.

 To  reduce  the  online  computation  burden,  different  options  will  be  analysed:  relaxation  of
optimization convergence requirements, minimization of constraints applied to the optimization
problem, reduction of the prediction horizon, avoiding hybrid and nonlinear models, etc.
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 Modelling errors will also be considered. To avoid performance deterioration, modelling errors
and unmodeled dynamics (friction, higher order dynamics…) must be compensated. Disturbance
modelling will be included in the MPC formulation.

4.2.5.4 Requirements  

ID Requirement Comments
R27-
D4.1

Model  Predictive  Controller  should  be
executed in COTS controllers

R28-
D4.1

Model  Predictive  Controller  should  be
executed at a high sampling rate

R29-
D4.1

Model Predictive Control will need feedback
of the main d.o.f of the mechatronic system

Table 6: Model-based predictive control requirements

4.2.6 Control for linear parameter-varying or time-varying systems
4.2.6.1 Introduction  

Performance requirements for motion control are getting more stringent, hence, effects of motion systems
which were previously not taken into account for control design, cannot be neglected anymore. Two types
of systems which are getting more relevant are linear parameter-varying (LPV) systems and time-varying
systems. 

4.2.6.2 State of the Art  

LPV system representation
LPV systems can both be represented in continuous-time and discrete-time (Tóth, 2010). First, consider
the continuous-time state-space representation

G ( ρ ) : { y=C ( ρ ) x+D (ρ ) u
x '

=A ( ρ) x+B (ρ ) u             (Eq. 4.40)

Which can be written in the input-output sense using a transfer function

G (s , ρ )=C ( ρ ) ( s⋅I−A ( ρ ) )
−1
⋅B ( ρ )+D ( ρ )=

N (s , ρ )

d ( s , ρ )
=
∑i=0

n
n i ( s )⋅θn, i

∑i=0

n

d i ( s )⋅θd ,i

           (Eq. 4.41)

Additionally, the transfer function can be rewritten by expanding into partial fractions as

N ( s , ρ )

d (s , ρ )
=D+∑ i

α i

s+λi ( ρ )
+∑j

β j s+γ j

s2
+2⋅σ j ( ρ ) s+σ j

2 ( ρ )+ω j
2 ( ρ )

                     (Eq. 4.42)

In discrete-time, the most commonly used structures are state-space or ARX models, where the former is
defined as

x (k+1 )= A ( ρ (k ) )⋅x (k )+B ( ρ (k ) )⋅u (k )                 (Eq. 4.43)

y ( k )=C ( ρ (k ) )⋅x (k )+D ( ρ ( k ) )⋅u (k )            (Eq. 4.44)

And the latter as

y ( k )+∑i=1

na

ai ( ρ (k ))⋅y (k−i )=∑ j=0

nb

b j ( ρ (k ) )⋅u (k− j )+e (k )                (Eq. 4.45)
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Data-driven parametric LPV identification
LPV identification has been investigated previously. This roughly started in (Bamieh & Giarre, 2002),
where identification of SISO discrete-time rational transfer functions of the form

G ( ρ [ k ] ,q )=
B ( ρ [ k ] ,q )

A ( ρ [k ] ,q )
=
∑i=k

nb

b i ( ρ [ k ] ) q−i

∑i=0

na

a i ( ρ [ k ] ) q−i

           (Eq. 4.46)

are identified. This can be viewed as an ARX or Output-Error (OE) structure. In (Bamieh & Giarre,
2002), the input-output data is lifted over the identification period and a least squares solution for the
parameters ai and bi is found. Extensions of this include adding orthonormal basis functions (Tóth et al,
2007) and regularization in the terms of kernels (Golabi et al, 2011; Tóth et al,  2011; Darwish et al,
2018). An overview of data-driven LPV identification techniques can be found in (Bachnas et al, 2014).

Inverse and feedforward for LPV systems
Inversion of LPV systems is used for feedforward control of LPV systems. A general view on inverse
system design for  LPV systems can be found in (Szabó et  al,  2003;  Sato,  2008).  Historically,  LPV
(feedforward) control was done using gain-scheduling (Rugh & Shamma, 2000), and more recently a
frozen feedforward strategy utilizing Gaussian processes for LPV systems has been investigated in (van
Haren et al,  2022).  The extension towards true LPV feedforward, i.e.,  not  using a gain-scheduled or
frozen feedforward is done in (Szabó et al, 2003; Sato, 2008; Rugh & Shamma, 2000; van Haren et al,
2022; Butcher & Karimi 2010), and in the iterative sense in (Butcher & Karimi 2010, de Rozario et al,
2018; de Rozario et al, 2017).

4.2.6.3 Progress beyond the SoA  
The major contribution to the progress beyond the SoA is considered to be the following:

Data-driven grey-box methods for LPV feedforward
The  proposed  approach  is  to  pursue  a  grey-box  feedforward  strategy  for  LPV  systems.  The
considered set of (quasi-)LPV systems are

G ( ρ ) : x '=A ( ρ )⋅x+B ( ρ )⋅u
y=C ( ρ )⋅x+D ( ρ )⋅u

    (Eq. 4.47)

With scheduling variable  ρ (t ) , which can contain both outputs and derivatives of the output of the
system  and  exogenous  known  scheduling  signals.  The  system  is  rewritten  to  transfer  function
representation as

G (s , ρ )=C ( ρ ) ( s⋅I−A ( ρ ) )
−1

B ( ρ )+D ( ρ )=
N ( s , ρ )

d (s , ρ )
=
∑

¿

n
ni ( s )⋅θn,i

∑
¿

n

d i ( s )⋅θd ,i

    (Eq. 4.48)

For these kinds of systems, in the LTI sense, typically polynomial feedforward is applied. For LPV
systems, here the parameters are also chosen LPV as

u=∑i=1

nθ

ψi θi ( p )     (Eq. 4.49)

Where  p (t )  is  the  scheduling  variable,  which  for  feedforward  can  contain  the  reference,  it’s

derivatives or exogenous variable, e.g., p=(r , r ' , φ ) . This means that for feedforward it is assumed
that the output tracks the reference arbitrarily well. The basis functions ψi  are determined based on

first principle modelling of the LPV system. The parameters θi  are learned using input-output data
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of a (stable quasi-) LPV system. The modelling of the parameters as a function of the scheduling
signal will be done by utilizing a Gaussian process. This is envisioned since Gaussian processes are
non-parametric,  which is ideal for cases where the underlying structure is not known beforehand,
which is generally the case for LPV feedforward parameters. The parameters are modelled using the
covariance function (Rasmussen, 2003), i.e.,

c o v (θ i ( p ) ,θ i ( p ' ) )=E (θi ( p )θ i ( p' ) )=K ( p , p ' )      (Eq. 4.50)

In combination with input-output data, the parameters can be jointly distributed as a Gaussian Process
as

[ u(t )
θi *( p(.))]~ N (0 ,[ ku(t , t)+σ2 · I    K i *(t , p(.))

K i*(t , p(.))        K i(p(.), p(.))])           (Eq. 4.51)

Where the kernels ku  and K i
*

 are determined using the kernel function K i    and the basis functions

ψi . The resulting algorithm can learn LPV basis function feedforward using input-output data in the
Bayesian sense.

Data-driven inverse LPV-FIR identification using machine learning techniques.
In addition to applying grey-box methods for feedforward for LPV systems, LPV Finite-Impulse-
Response  (FIR)  feedforward  is  envisaged.  This  is  realized  via  the  following  parameterization

u ( t )=∑i=−τ ac

τc

θi ( p (t ) )⋅r ( t−i )         (Eq. 4.52)

With the amount of causal FIR parameters τ c
 and amount of non-causal FIR parameters τ a c

. Again,

input-output data of an LPV system is used to learn the parameters θi
 as a function of the scheduling

sequence. Similarly, as the previous section, Gaussian processes are employed again.

4.2.6.4 Requirements  

ID Requirement Comments
R30-
D4.1

For  LPV  control  to  be  applicable,  the
scheduling variable must be measured

R31-
D4.1

Given an LPV system,  the  structure  of  the
LPV controller must be specified by the user

Table 7: Linear parameter-varying systems requirements

4.2.7 MIMO Control
4.2.7.1 Introduction  

Some mechanical systems need to fulfil  more than one control objective using a single actuator.  The
problem of  the  classical  control  approach lies  in  that  several  objectives  must  be  accomplished with
independent Single-Input Single-Output (SISO) control structures, which can lead to opposite actuation
commands,  even  destabilizing  the  system.  Modern  Multiple-Input  Multiple-Output  (MIMO)  control
methods are more appropriate to design control strategies that must meet several control objectives.

Pitch actuation of Wind Turbines (WT) in Floating Offshore (FO) are a clear example of this issue, as
undesired cross effects appear when applying SISO control of the pitch control, Active Tower Damping
(ATD) and Active Platform Damping (APD). Hence, this application is used as a reference to present the
technology.  In any case, the approach can be later on applied in other systems, like cranes.
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A wind turbine control has usually several layers, being the two most important layers the supervisory
control and the operational control. The supervisory control guarantees a safe operation of the machine,
governing  the  turbine  operation  at  different  machine  states  and the  transitions  between these  states.
Software  and  hardware  safety  systems,  shut  down  processes,  detection  and  management  of  faulty
conditions are supervisory control tasks.

The operational control is concerned with the power extraction and load minimization on the turbine
components. Three actuations are available for this: blade pitch angle, generator torque and yaw angle.
Due to the low dynamics, yawing actuation is usually performed with basic controllers, being thus not
interesting for advanced control designs.  Pitch and yaw actuations exhibit  higher dynamics,  and it  is
expected that higher benefits will be achieved using advanced MIMO controllers.

The classical approach for the pitch and yaw control is based on the conventional PID controllers. There
are two main operation regions:

 Region II: in low-mid winds, the goal is to maximize the power extraction from the wind. For
this, turbine rotation velocity is modified to be kept as close as possible to the Optimum operation
point (maximum Cp).

 Region III. at mid-high winds, blade angles are regulated to maintain the nominal rotation and
power production values.

The classical PID based control structures to achieve these objectives are:

1. A torque control, usually PI, that regulates the WT rotation speed in Region II. This loop is
saturated in Region III.

2. A pitch control, usually PID, that regulates the WT rotation speed in Region III. In Region II,
the pitch angle is kept constant at the optimum value.

Apart from these main two loops, the operational control also offers additional functionalities, usually
with  the  objective  of  reduce load  components  that  increase  the fatigue  of  the  machine  components.
Examples of these functionalities are:

1. DTD (Drive Train Damping), to damp the torsion mode of the drive train.
2. ATD (Active Tower Damping), to damp the tower 1st fore-aft bending resonance.
3. IPC (Individual Pitch Control), to reduce the 1P component in blade base loads.
4. In the case of FOWT (Floating Offshore), APD (Active Platform Damping), to damp the pitch 

oscillation of the floating platform.
5. Etc.

4.2.7.2 State of the art  

The WT advanced controllers usually are based on Linear Time Invariant (LTI) linear state-space models.
Linear state-space models are used to describe the dynamics of the WT system in a reduced order model.
Next equations represent a state-space representation of a plant:

δ x '=A⋅δ x+B⋅δ u
δ y=C⋅δ x+D⋅δ u  

(Eq. 4.53)

where  δx  is the state vector,  δu  the input vector and  δy  the available measurements. The term  δ
means small deviations around the linearized operation point.

One usual way to calculate the matrices involved in this state-space representation is by means of the
dynamic equations of the WT components: 1 d.o.f. model of the drive train, simplified model of the tower
capturing the 1st fore-aft bending resonance, etc.
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Another way is using aeroelastic codes such FAST or Bladed. These codes allow the linearization of
highly non-linear WT dynamics in the desired operation points. These codes also allow switching on the
desired d.o.f. of the model in order to obtain a suitable reduced-order model for control design.

The most common MIMO control structures used in WT operation are briefly described below (detailed
reviews are available in Kamran et al, 2021; Yuan & Jiong, 2017; Wright et al, 2019):

LQR & DAC structures
Linear Quadratic Regulators (LQR) supplemented with Disturbance Accommodation Control (DAC) is a
very  popular  approach  in  WT operation  control.  This  control  structure  allows  to  consider  different
objectives in a unified framework: rotor speed regulation and minimization of loads on the main WT
components can be achieved at the same time.

The DAC strategy “accommodates” the wind disturbance inside the system plant model augmenting the
plant state with the disturbance estimate. In this way, wind speed variations from the value used in the
linearization point are properly considered in the controller.

For the controller action, the static gain of the plant state feedback can be obtained applying the LQR
method. The LQR method is based on minimizing some cost function calculated weighting the plant
estates and actuation variables.

In some cases, a Linear Quadratic Gaussian (LQG) controller is used instead of the LQR solution. The
difference is that the LQG approach assumes that the states and the measurements are driven by zero-
mean Gaussian white noise stochastic processes. In this case, the optimal gain is given by the Kalman
filter.

As  mentioned  above,  the  LQR&DAC  approach  is  widely  used  in  WT operation  control.  Examples
include  regulation  of  rotor  speed  while  damping  the  drive-train  torsion  resonance  and the  tower  1st

bending moments,  Individual  Blade Pitch Control  (IBPC) for reduction of blade base periodic 1P/2P
loads, etc.

LQR&DAC control structures have been widely used in wind turbine control. As example, NREL has
investigated  the  use  of  this  control  structure  through the  analysis  of  the  LQR,  DAC and combined
LQR&DAC solutions.   In  (Stol  & Fingersh,  2003;  Wright  et  al,  2011),  an LQR&DAC controller  is
designed for the two-bladed teetering hub upwind machine of 600-kW CART2 wind turbine. The design
objective is to regulate turbine speed and enhance damping in several low-damped flexible modes of the
turbine.  In  (Wang  et  al,  2016),  two  independent  pitch  controllers  (IPCs)  based  on  the  disturbance
accommodating  control  (DAC)  algorithm are  designed for  the  three-bladed CART3  wind turbine  to
mitigate blade root flap-wise bending loads in above-rated wind speed. Finally, in (Sinner & Pao, 2020),
DAC  is  implemented  for  two  cases:  estimating  the  disturbance  (upcoming  wind)  from  feedback
information and considering disturbance measurements produced by Lidar.

Robust Control, H2/H¥

Obtaining an exact WT model is a hazardous task caused by the highly nonlinear aero-elasto-dynamics,
actuator  saturations,  higher  order  dynamics,  etc.  Robust  Control  allows  to  account  for  the  model
uncertainties as well as the disturbance uncertainties in the control design.

The Robust Control solution consists of stabilizing robustly a family of plants with uncertainty. H-infinity
optimization methods based on minimizing H2/H¥ norms of the weighted closed-loop transfer functions
of the system (sensitivity function, complementary sensitivity function, etc.) are applied for this.

Examples of a typical application of Robust Control in WTs are the damping of the drive-train torsion
mode and the 1st fore-aft and side-to-side bending modes of the tower.  One example of robust control
application to wind turbine control can be seen in (Mirzaei et al, 2012).
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MPC structure
Model Predictive Control (MPC) is an advanced control strategy that we already discussed in section
4.2.5. Based on the current system states vector and a prediction model of the system it estimates the
input actions to the system by minimizing a cost function over a time horizon in the future. The control
action for all the time horizon is calculated, but only the first control sequence is applied to the real
system. The MPC formulation allows to apply constraints both in the inputs and outputs, as well as to
deal with nonlinear and hybrid systems.

In the WT operation control, MPC is usually combined with LIDAR sensors. When designing an MPC
solution and besides the prediction model, information of future disturbances (wind speed) is needed. In
the past, wind disturbance used to be estimated using Kalman filters. Nowadays, a wind speed sensor
LIDAR provides  valuable  information  on  the  upcoming  wind  disturbance  on  the  WT.  Examples  of
application of MPC to wind turbine control are (Schlipf et al, 2014) and (Korber & King, 2010).

Other strategies
Other control solutions that have been tested in WT operation control are:

1. Adaptive Control. An adaptive control technique faces the uncertainties in the model and in the
operating conditions. As one example, in the Model Reference Adaptive Control (DMRAC) the
plant output tries to follow the output of a reference model (an example of application to wind
turbine control can be seen in (Frost et al, 2009) and (Magar et al, 2016)).

2. Linear  Parameter  Varying  (LPV)  control.  In  (Eq.  4.39),  a  LTI system is  described,  i.e.,  the
matrices of the model equations are constant,  calculated for just one operation point.  Control
actions are designed for each operation point based on this LTI representation of the plant, and
then scheduled to apply in all the operation points. A different approach is to consider the WT
nonlinear  behaviour  in  the  equations.  In  this  way,  the  nonlinear  behaviour  of  the  plant  is
accounted for in the model, and the controller is designed once for all the operation points. This is
the LPV control (example of application to wind turbine control: Ossman et al, 2017).

3. Others: Input/Output Feedback Linearization (IOFL) control, Sliding Mode Control (SMC)…

4.2.7.3 Progress beyond SoA  

There are many papers that  deal with the use of LQR, DAC and combined LQR&DAC solutions to
control wind turbines, but in most of the cases they are based on very simplified wind turbine controllers.
The purpose of these developments is to show the validity of the control concept, in this case the validity
of the LQR&DAC concept in its various variants. Unfortunately, the resulting control structures are far
from their application in a real wind turbine controller.

The progress pursued with this technology is to reduce this gap from academy to industrial application.
To this end:

1. A real problematic will be addressed: the stability of the control in the region III. It is well known
the negative damping problem in FOWT turbines, caused by the interaction of the pitch loop (that
controls the rotation speed of the rotor) and the platform pitching resonance. Some MIMO control
strategy is needed to cope with this problem.

2. The MIMO solution will not be built from scratch. Taking in mid the industrial application, the
baseline control  will  be  a  state-of-the-art  industrial  control.  This  industrial  control,  based on
multiple SISO elements, will be kept as the baseline controller, and the LQR&DAC controller
structure will be added only where it is necessary: speed regulation in region III, stabilizing the
tower 1st fore-aft and platform pitching oscillations.
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3. Taking in mind the industrial application of the final control solution, the sensing needed by the
MIMO structure will be limited as closely as possible to the usually available measurements in a
wind turbine.

In short, the final control solution will be ready to implement in a real turbine and easily implementable.

For the controller development and simulation environment, a Floating Offshore Wind Turbine (FOWT)
model will be used. The WT model used will be the DTU 10MW Wind Turbine, first presented in the
INNWIND.EU European Project.  This  turbine is  designed for an IEC Class 1 A wind climate.  This
turbine is coupled to the Nautilus floating platform public model. The Baseline control of the plant is
developed in the commercial software Matlab/Simulink. The new MIMO LQR & DAC solution will also
be implemented in Matlab/Simulink.

The first step is to calculate the state-space model that represents the plant described in eq 4.54. 

δx '= A·δx+B·δu
δy=C·δx+D·δu

(Eq. 4.54)

where  δx  is the state vector,  δu  the input vector and  δy  the available measurements. The term  δ
means small deviations around the linearized operation point.

This model is a Linear Time Invariant (LTI) representation of the system obtained at one linearization
point. The FAST dynamic code will be used to develop such linear models. Depending on the design
structure and control objectives, some d.o.f. of the plant will be switched on and other switched off.

The idea is to design the MIMO controller for the operation Region III, acting only on the pitch loop (The
Torque controller will be retained from the Baseline controller). The multiple objectives of the controller
will be to regulate the rotor speed, and to add damping to the 1st tower fore-aft bending moment and to the
platform pitch oscillation. For this, the roadmap is to proceed step by step in the development of the LQR
& DAC controller: 1st regulate only the rotor speed, 2nd add damping to the tower bending resonance, and
if possible, 3rd add damping to the platform pitch mode.

In the following lines, a deeper insight in the design of the LQR & DAC MIMO control is provided.

A typical control action performed in state-space representation is the feedback of the system state:

δu=G⋅δx (Eq. 4.55)

where G is the gain matrix.

This gain matrix can be calculated placing the closed-loop poles in the complex plane in the desired
location.  The  closed-loop  poles  are  determined  by  the  eigenvalues  of  the  closed-loop  system:
eig ( A+B⋅G ) . Matlab Control Design Toolbox can be used for this.

Another option to calculate the gain matrix G is applying the LQR approach. In this approach, a quadratic
cost function for the regulation problem at an operating point is defined:

J =∫0

∞
(δxT

⋅Q⋅δx+δuT
⋅R⋅δu ) dt (Eq. 4.56)

Where  Q  and  R  are  nonnegative and symmetric  matrices  of  weights  for  the  state  and input  vectors
respectively. The optimal feedback gain matrix is calculated solving this LQR problem. The control law
is just the one that optimizes this cost function. Matlab Control Design Toolbox can also be used to solve
this LQR problem.

But usually, as in the WT case, the measurements of all the states are not available: the number of sensors
is limited. A state estimator is needed. System states can be measured using next model:
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δ ˙̂x=A⋅δ x̂+B⋅δu+K ( δy−δ ŷ )

δ ŷ=C⋅δ x̂+D⋅δu
(Eq. 4.57)

where ^ indicates estimated value, and K is the weight applied to the estimation error.

The  estimator  dynamics  can  be  tailored  placing  the  eigenvalues  of  the  closed-loop  system:

eig ( A−K⋅C )  in the desired location in the stability complex plane.

The control action is performed with the estimated state vector:

δu=G·δ x̂ (Eq. 4.58)

In the  controller  design described until  now,  the  effect  of  the  disturbances  (wind and waves)  is  not
accounted for. Adding these disturbances, the state-space representation of the system becomes:

δx '= A⋅δx+B⋅δu+Bd⋅δud

δy=C⋅δx+D⋅δu+Dd⋅δud

(Eq. 4.59)

where δx  is the state vector, δu  the input vector, δud  the disturbance input (wind or wave) and δy
the available measurements.

A state-space representation of the disturbance model is needed. The disturbance model can be expressed
in the state-space form as:

δzd '=F⋅δzd

δud=H⋅δzd
(Eq. 4.60)

where δzd  is the disturbance state vector and δud  the disturbance input. Matrices F, H depend on the
model used to represent the disturbance: step wind disturbance, shear disturbance, etc.

Now, this augmented state-space representation allows to include the effect of the disturbances in the
control design, giving rise to the LQR & DAC control.

In the LQR & DAC approach, the control action is given by

δu=G⋅δx+Gd⋅δzd (Eq. 4.61)

Where Gd  is the gain affecting the disturbance state vector.

While the state vector gain  G is calculated placing the closed-loop poles in the desired location in the
complex  plane  (or  solving  the  LQR problem),  the  disturbance  state  vector  gain  Gd

 is  calculated  to

mitigate the effects of the disturbance.

Disturbances are also unmeasured: the disturbance state must also be estimated based on the available
measurements  on  the  WT.  This  is  accomplished  by  augmenting  the  state-vector  estimator  described
above. Now, the plant estimator is given by:

δ x̂ '=A⋅δ x̂+B⋅δ u+Bd⋅δ ûd+K (δ y−δ ŷ )

δ ŷ=C δ x̂+D δ u+Dd δ ûd
(Eq. 4.62)

Where ^ indicates estimated value, and K is weight applied to the estimation error.

Similarly, the disturbance estimator is defined by the next model:
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δ ẑd '=F⋅δ ẑd+Kd (δ y−δ ŷ )

δ ûd=H⋅δ ẑd
 (Eq. 4.63)

where Kd  is weight applied to the estimation error.

Finally, the control action is calculated from the estimated state and disturbance vectors:

δ u=G⋅δ x̂+Gd⋅δ ẑd (Eq. 4.64)

Figure 21 shows the structure of the LQR & DAC controller:

Figure 21: LQR&DAC controller structure.

4.2.7.4 Requirements  

No specific requirement is foreseen for this technology

4.2.8 Control and identification of multi-rate systems

4.2.8.1 Introduction  

Many  mechatronic  systems  contain  multiple  sampling  rates  in  the  same  control  loop.  Consider  for
example vision-in-the-loop systems, where typically cameras are sampled at a much lower rate than the
encoders.  In that  case,  visual  information from the cameras must  be processed into a higher rate by
interpolating the received data. Sometimes, sensor data must be decimated in order to reduce the rate at
which information is received. In many cases, both interpolation and decimation must be combined in
order  to  accurately  adjust  the  rate  of  all  incoming  data.  Multi-rate  control  and  identification  is  the
technique that tries to deal with these kinds of systems.

4.2.8.2 State of the art  

 Multi-rate control for the use in sampled-data control

Sample-data control is a control system where a continuous-time plant is managed by a digital
controller, see Figure 22.
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Figure  22:  Sampled-data  control  structure  with  continuous-time  plant,  hold  and  sample
operations.

An overview of sampled-data systems is given in (Chen & Francis, 2012). Typically, sampled-
data control is  approximated by sampling the continuous-time plant in a sampling rate much
higher than the controller,  which is referred to as multi-rate control (Glasson, 1983), see also
Figure 23.

Figure 23: Approximation of sampled-data control by sampling the plant arbitrarily high.

In (Oomen et al, 2007), feedback control synthesis and performance evaluation in the frequency-
domain for sampled-data systems is discussed. Additionally, inter-sample performance is of great
interest in sampled-data control, which is investigated in (Bamieh, 2003; Oomen et al, 2009). 

 Multi-rate feedforward control

Multi-rate  control  is  also  used  to  improve  tracking  performance  by  sampling  a  feedforward
controller at a different rate, see (Fujimoto et al, 2001; Mae et al, 2020; Ohnishi et al, 2021).
When using this approach, multi-rate techniques are used to overcome issues like sampling zeros
when inverting systems, limited computation time of the controller and taking derivatives of the
reference used in linear feedforward techniques.

Additionally, feedforward control for systems with different sampling rates is investigated in (van
Zundert et al, 2018). This can generally be the case when systems operate at different sampling
rates. Consider for example a dual stage system, or a system with additional sensors that cannot
be sampled as fast as the encoders. In (Zundert et al, 2018), high-rate signals from a high-rate
control loop are used in the feedforward controller of a low-rate control loop as shown in Figure
24.
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Figure  24: Multi-rate feedforward control: a high-rate and low-rate
controller communicating in order to process high-rate signals with a
low-rate control-loop.

4.2.8.3 Progress beyond SoA  

Two major contributions are envisaged to progress beyond the SoA. These can be summarized as

 Multi-rate system identification.

Identification of systems operating in multi-rate feedback in the frequency-domain, both in terms
of transfer functions, but also in terms of multi-rate frequency-domain representations, such as the
performance frequency gain.

 Multi-rate inferential identification and control.

Since many systems have additional sensors that measure the inferential performance variable,
which  are  sampled  at  a  different  rate  (i.e.,  consider  a  camera  (Vision-in-the-Loop)  or
accelerometer), inferential identification and control can be necessary.

4.2.8.4 Requirements  

No specific requirement is foreseen for this technology. As mentioned, the proposed approach uses WT
control as a clear application where MIMO control benefits are clear. The same approach can be adapte to
equivalent applications, like crane systems.

4.3  BB5 requirements

The next table summarizes the requirements for Building Block 5, integrating the ones defined in D2.3
with  the  new  ones  defined  for  each  tecnology  in  the  different  tables  available  insection  4  of  this
document.

ID Requirement Priority Verify Comments Task
s

Interfaces and connectivity
R124-
D2.3

AI-based  algorithms  should  be  compatible
with commercially available TPU’s

C I Allows  for
application  in
embedded
solutions

T4.1
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R125-
D2.3-
L2

BB5  can  be  connected  to  Matlab/Simulink
(Layer 2 to Layer 3) for configuration, etc.

C A T4.1

R1-
D4.1

Gain or phase stabilization of dominant
resonance modes must overlap with target
closed-loop bandwidth

R15-
D4.1

Control algorithms for switched reluctance
motors should consider that reversing the
direction of current does not reverse the
direction of torque

R27-
D4.1

Model Predictive Controller should be
executed in COTS controllers

Maintainability (modularity, analysability, testability)
R126-
D2.3-
L2

All smart control algorithms shall have a clear
documentation  that  explains  input,  outputs,
description, and parameter settings

M I T4.1 

R127-
D2.3-
L2

Smart control algorithms and models shall be
tested in simulation

M T Validated  in
WP6

T4.1,
T4.2

R128-
D2.3-
L2

Control  functionalities  should  be  able  to  be
tested  by  automatic  means  and  accordingly
documented (requirement traceability)

C T T4.1

R11-
D4.1

Systematic design procedures allow automatic
or  semi-automatic  synthesis  and
parameterization  of  the  control  structures
without requiring a highly skilled operator

Performance
R6-
D4.1

Sufficient performance improvement on 
vibration control systems must be had 
compared to conventional control schemes

R9-
D4.1

Computation burdens should be compatible 
with available computation power on the 
drives

R12-
D4.1

Sufficient performance improvement on 
repetitive control systems must be had 
compared to conventional control schemes

R20-
D4.1

Iterative techniques must be able to achieve 
good performance even in the presence of 
trial-variant disturbances

R24-
D4.1

Friction compensation must be executed at a 
high sampling frequency

Minimum 
sampling of 1 
kHz

R28-
D4.1

Model Predictive Controller should be 
executed at a high sampling rate

Minimum 
sampling of 1 
kHz
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Power efficiency
R14-
D4.1

Solutions to the over-parametrized 
commutation problem should penalize power 
consumption

Compatibility (interoperability, co-existence)
R129-
D2.3-
L2-L3

The library in BB5 shall be compatible with
BB4

M D T4.1,
T4.3,
T4.4,
T4.6

R130-
D2.3-
L2-L3

All  models  should  be  compatible  with
Matlab/Simulink

S D T4.2,
T4.3,
T4.4

R131-
D2.3-
L2-L4

Modelling  should  be  compatible  with  code
generation tools

M D T4.1,
T4.2,
T4.3,
T4.4

R132-
D2.3

BB5 shall  be  compatible  with  smart  control
blocks developed in I-MECH

S D T4.2,
T4.3,
T4.4

R24-
D4.1

Friction compensation must be added to the
control action of the applied controller
(current control loop input)

Usability (operability)
R133-
D2.3

BB5 shall be able to be executed in real-time
on provided execution  platforms  (e.g.  via
BB1, BB4)

M T T4.1

R5-
D4.1

Systematic  design  procedures  of  vibration
control systems must allow automatic or semi-
automatic  synthesis  and  parameterization  of
the  control  structures  without  requiring  a
highly skilled operator

R13-
D4.1

The strategy used for repetitive control should
allow for flexibility towards different tasks

R22-
D4.1

Techniques in machine learning, applied to
control, must have interpretable hyper-
parameters such that the user knows what to
expect when changing the values

R31-
D4.1

Given an LPV system, the structure of the
LPV controller must be able to be specified by
the user

Reliability (fault tolerance, availability)
R134-
D2.3-
L2-L4

Control  algorithms  will  have  self-diagnosis
functions

S I T4.1

Portability (adaptability, replaceability)
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R135-
D2.3

BB5 shall offer customizability such that non-
standard tasks (i.e., tasks which are typically
performed  in  research)  can  be  performed.
Examples  include  flexibility  in  allowed
controller  structures  and
reference/feedforward signals

S T T4.1

R23-
D4.1

Real-time algorithms must be sufficiently
resource-efficient to be applicable to
hardware that is standard in industry

Safety
R136-
D2.3-
L2-L4

Smart  control  algorithms  of  collaborative
robots  (Cobots)  need  to  be  compliant  with
safety standards

M A T4.1,
T4.2,
T4.3,
T4.4

R16-
D4.1

Compliant applications must use torque-based
control schemes

R18-
D4.1

Stability of the system in both training and
tests must be demonstrable, i.e, it must be
safe

Digital twin
R137-
D2.3-
L2-L4

Data-driven  models  shall  be  compared  to
analytical models and/or validated real robots

S A T4.1,
T4.2,
T4.3,
T4.4

R8-
D4.1

Load-side motion control requires the usage of
additional sensors

R17-
D4.1

Accurate  dynamic  models  must  be
automatically captured

R18-
D4.1

Smart control algorithms must integrate
models and adaptation mechanisms within
the control loop

R19-
D4.1

Control  algorithms  must  be  robust  to
modelling errors

R26-
D4.1

Although characterisation of friction is not
required for friction compensation algorithms,
a two-mass model of the controlled system is
required

R29-
D4.1

Model Predictive Control will need feedback
of the main d.o.f of the mechatronic system

R30-
D4.1

For LPV control to be applicable, the
scheduling variable must be measured

Table 8: BB5 requirements
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5 Path  planning,  trajectory  generation,  obstacle  avoidance,
navigation (BB10, Task 4.5)

5.1 Introduction

Path planning, i.e., the search for sequence of points (states) that represent the feasible path that connect
the start pose with the goal pose, is a task usually associated with Layer 3 (system behaviour), but for a
machine to properly work on an unstructured environment it is essential to adapt the given path on real
time, thus relying on the control layer (Layer 2). 

This adaptation in real-time to the environment relies in 2 components: the analysis of the environment
and the decision making. The first component tries to find unexpected elements not accounted for in the
initial  planning  phase,  such  as  obstacles.  The  second component  works  on  how to  adapt  the  initial
navigation plan to the new information, and generate a new plan if necessary.

In this section of the deliverable, we will  focus on these 2 components of the control Layer and the
requirements related to them.

5.2 Control functionalities

5.2.1 Multi-sensory data input with sensor-fusion for extended environment detection

5.2.1.1 Introduction  

Sometimes modelling the working environment is needed for enabling path planning that is safe for the
operators, the environment and the machine itself. In the simplest approach, the environment model can
be formed by measuring diverse distances on the environment, such as the diameter or length of a tunnel.
In some cases, such as mining environments, this is not enough, and instead manually measuring points in
the tunnel surfaces with the help of some pointer system is needed. This approach requires possibly too
time-consuming manual operations after the machine is driven and settled to the work site and before the
actual work can begin. Operation that is more automatic requires the use of some sensor system, which
automatically measures a point cloud from the tunnel surfaces.

In other cases, even if the environment is well known, moving obstacles, such as a human or animal, can
interfere on the trajectory of a machine. In these cases, in which the environment is not static, but may
include some dynamic changes, sensors must be included into the vehicle so that these obstacles can be
detected and avoided.

5.2.1.2 State of the art  

Radar processing
Automotive radar is one of the main state-of-the-art technologies for collision avoidance. It is a  sensor
system based on frequency-modulated continuous-wave or FMCW radar. It is less expensive than pulse-
Doppler  radar  and  can  be  performed  on  low-cost  FPGAs.  This  also  influences  and  accelerates  the
development of radar chips. The trend is moving towards imaging radar processes in order to be able to
guarantee the most precise possible detection of the surroundings in all weather and light conditions.

The  basis  for  the  IMOCO4.E  project  is  a  77  GHz  radar  sensor  for  industrial  robotics  applications
developed in the RoKoRa project (Abdelawwad et al, 2021). This sensor can be seen in figure 25. In the
KLARA project (Hirsch et al, 2020), the radar backend was extended by a signal processor that can be
used to execute AI algorithms.
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Figure 25: Radar sensor from RoKoRa project Figure 26: Sensor unit with 77 GHz radar, camera and mini-
PC from VIDETEC project

For  the  work  of  sensor  nodes,  Mini-PC  that  can  be  individually  adapted  to  the  application  by
programming are commonly used. The VIDETEC project (Kulke et al, 2022) chosed the Nano Pc-T4 as a
small  high-performance Mini-PC that  could work as a  sensor unit.  This unit,  containing a miniature
camera and a 77 GHz RoKoRa radar, can be seen in figure 26. Video and radar data are recorded by the
Nano-PC and stored synchronously in a common data format. The data can be stored locally and read out
via a data interface (Ethernet or USB).

Camera based detection and visual servoing
Visual  servoing is  a technique which uses feedback information extracted from a vision sensor.  It  is
widely  used  in  the  field  of  boom mining  as  it  guides  the  boom and  helps  react  to  changes  in  the
environment.  The  visual  sensing  modality  can  be  either  2D imaging or  3D with  e.g.,  time-of-flight
cameras, with the sensors mounted in the end-effector (hand-in-eye configuration) or fixed in the scene
(eye-to-hand) and calibrated with the booms frame (Corke & Khatib, 2011). Key aspect of this approach
is the selection of the used visual features, on which the process explicitly relies on. This is mainly a
computer  vision  problem,  in  which  accurate  and  robust  feature  and  object  detection  and  tracking
algorithms  are  among  the  fundamental  research  topics.  Convolutional  neural  network  (CNN)  based
systems have surpassed more traditional computer vision algorithms and represent state of the art ( Jiao et
al, 2019; Liu et al, 2019). Furthermore, the visual control schemes can be divided into image, position and
hybrid approaches. Image-based control schemes fully rely on features derived directly from 2D images,
while position-based approach necessitates estimating the target object pose in full  3D space. Hybrid
approaches  represent  state  of  the  art  and  allow,  for  example,  determination  of  a  boom end-effector
translation movements in the 2D image space and rotations in full 3D space (Chaumette & Malis, 2000;
Malis & Chaumette, 1999).

5.2.1.3 Progress beyond the SoA  

Radar processing
In IMOCO4.E, the frontend of the radar sensor is currently being redesigned. In particular, a new
antenna  is  being  developed  that  supports  Multi-Input  Multi-Output  (MIMO) data  processing.  In
MIMO,  the  different  transmitting  and  receiving  antennas  are  arranged  in  such  a  way  that  they
function as a virtual antenna array, thus increasing the number of radar channels. A configuration of 3
transmitters  and  4  receivers  becomes  a  virtual  system  of  3x4=12  channels.  This  allows  for  a
significantly  improved detection  of  the  environment.  This  radar  should  detect  obstacles  and  the
possible driving paths.

The sensor unit will also be further developed and programmed so that more radar modules can also
be connected.
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Camera based detection and visual servoing in boom control
Camera  based  detection  of  the  objects  is  a  challenging  problem,  as  the  environment  and visual
features of the mining environment can change dramatically. Previously mainly LIDAR 3D scanning-
based approaches have been proposed in the literature (Bonchis et al, 2014). However, these suffer
from poor detection power when the object axis is not aligned with the scanner as demonstrated in
(Bonchis  et  al,  2014),  and from use of  relatively fragile sensors  in  harsh environments.  For  this
reason, 2D-camera based approaches with state-of-the-art open-source object detection systems using
CNN are utilized here. Such object detectors far surpass more traditional computer vision systems in
both  detection  accuracy  and  generalization  capabilities,  which  are  crucial  to  robustly  locate  the
objects in different environmental conditions. However, CNN approaches are hindered by their need
of large training datasets and high computational needs. The latter factor has specially delayed the
adaptation of  these technologies  in  industrial  environments  and robot  control,  in which real-time
processing  with  relatively  modest  computational  hardware  is  needed.  Nevertheless,  modern
optimization  techniques  (e.g.,  Augasta  &  Kathirvalavakumar,  2013;  Zhuang  et  al,  2018)  show
promise  to  significantly  reduce  the  processing  needs  especially  when  combined  with  hardware
accelerated platforms.

The progress beyond state-of-the-art in visual servoing is based on the abovementioned use of latest
CNN approach. This advancement will allow reliable use of visual servoing outside of laboratory
conditions, with visual sensors that are robust in harsh conditions. In addition, sensor fusion with
distant sensors will be used to complement the 2D image data and further aid the servoing task at a
low cost.  This also requires development of a new hybrid control law for the combination of 2D
image features and 1D sensor data.

5.2.1.4 Requirements  

ID Requirement Comments
R32-
D4.1

Object  detection  must  work  in  harsh
environments  with  varying  lightning
conditions and dark surfaces

R33-
D4.1

The object detection algorithm must provide
accurate  position information for  the  boom
control in real time

Table 9: Multi-sensory data input and sensor-fusion requirements

5.2.2 Real-time decision making in path planning

5.2.2.1 Introduction  

Based on a map of the environment, path planning solves the problem of calculating trajectory between a
starting  and  a  destination  point.  Several  different  path  planning  methods  like  “topology  bound
navigation”, “free navigation in maps” or “reactive navigation” exists. In the following a short overview
over relevant path planning algorithms for IMOCO will be presented.

5.2.2.2 State of the art  

Global path planning
A path or trajectory planned in the global planning stage incorporates the information and constraints
known at planning time. This plan usually leaves out details that either are unknown beforehand or that
would make the planning stage too complex. Some of the simpler cases can be solved using well known
algorithms,  such as  Dijkstra’s  algorithm (Dijkstra,  1959)  or  A* algorithm (Hart  et  al,  1968).  In  this
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document  we  will  focus  on  more  complex  cases,  such  as  the  coordination  and  path  planning  of
Automated Guided Vehicles (AGV).

Nowadays, companies  strive to archive an increase in effectiveness and flexibility. In order to archive
this,  the  intralogistics  are  organized with a  heterogeneous fleet  of  AGVs.  While  AGVs increase the
flexibility, they also introduce another problem: a fleet of AGVs needs to be coordinated in order to avoid
deadlocks between them. This restricts  the global  path planning stage,  as each AGV’s path must  be
compatible with the rest. This is usually done through a fleet management system (FMS) which aims to
coordinate the trajectories of a heterogeneous fleet of AGVs without deadlocks. For the coordination a
time  window-based  algorithm  is  used  to  ensure  collision-free  path  on  a  graph-based  topology.
Furthermore, for the heterogeneous AGV fleet a uniform communication standard will be used. Even in a
controlled environment, as common in intralogistics, dynamic events like path blocking pallets on the
ground can occur which require flexible handling. For this purpose, the FMS should enable dynamic re-
planning of the coordinated trajectory.

Planned trajectories are communicated from the FMS to the individual robots which execute them under a
limited local autonomy (local path planning). While the FMS has a global view on all the AGVs in a fleet
and may therefore make informed decisions based on the set of all plans, its information is limited to what
is available at time of planning. This usually excludes information about humans and human-operated
vehicles as well as obstacles, which in an intralogistics setting may include objects like pallets or boxes.
To facilitate safe motion of robots within such an environment, both appropriate sensors and the means to
act  on them need to be present.  Since reacting to unforeseen obstacles leads to a deviation from the
original plan, appropriate strategies for handling such deviations are required. We strive to implement
such a strategy in the way of actively allowing bounded deviation within the FMS’ plan as well as a re-
planning routine to be triggered by an individual AGV if a planned trajectory may not be executed within
that deviation.

One of  the  main global  path planning algorithms for fleet  management  is  the Context  Aware Route
Planning (CARP) approach of ter Mors et al, (2010) which presents a central graph-based approach for
collision-free navigation of autonomous systems. The algorithm guaranties the shortest path from a start
to a destination location, without colliding with any other robot. Time windows are used for the path

calculation and coordination. Calculated routes are defined as r i , τ i ,… , rn τ n , τi=(t i , t i
'
)   where ri is an

entity, vertex or edge of the resource graph and  τ n  is a time window that indicates that resource  ri is
available from time ti to ti’. The concept of CARP can be defined as follows. Each agent plans individual
routes successively one after the other. Thereby each AGV is represented as an individual agent. If an
agent  an plans its route, the already planned routes are included in the current calculation. Every resource
of the graph has its own time windows that defines the availability. For planning a conflict-free route,
overlapping  time  windows  between  the  individual  resources  of  a  route  are  required,  in  a  way  that

τ∩τ '≠∅ .

The Push and Rotate (P&R) algorithm was published by de Wilde, Ter Mors and Witteveen (2014) and
describes a centralized approach for collision-free navigation in a multi robot scenario. The algorithm
uses a graph-based topology, based on the environment, in order to calculate the path between a given
start and destination for each autonomous robot in the system. P&R plans successively for each robot
r i∈ A  a path. A path p is a sequence of steps si whereby every step represents a resource ri which can be

a vertex or edge of the graph ( pi=s1 , s2 ,…, sn ) . First, the shortest path is calculated, with the help of

path finding algorithms like A* or Dijkstra,  while  ignoring any obstacles.  Afterwards,  the algorithm
checks for every step whether the corresponding resource is occupied by another robot  r. When such a
situation exists,  two options are available to solve the conflict.  The first  option can be applied if the
occupying robot  r0 has not planned a path. In this case it is allowed to push it to a neighbouring vertex
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without the need to place it back to its original vertex. If the robot r0 has already planned its own path it is
invalid to push the robot out of the way. For this case P&R defines exchange points e ∈ E . Exchange
points are vertices which have at least three neighbours. With the help of a vertex e, ri and rj can switch
their  positions.  After  ri  passed  the  point  of  conflict  rj can  return  to  the  original  position.
In contrast to CARP and P&R, Conflict Based Search (CBS) (Sharon et al, 2015) does not employ an a-
priori  defined planning order or priority but instead determines the optimal priority on a per-conflict

basis, where a conflict generally describes two agents ai ,  a j  requiring a given resource r at the same

time τ  and is defined by the tuple (a i ,a j , r , τ ) . A conflict may be resolved by preventing either agent

from acquiring  r at  τ , prohibiting ai  or  a j  from using at  τ . Each conflict therefore offers a binary
choice,  resulting  in  a  binary  tree  containing  all  possible  combinations  of  constraint  choices.  By
evaluating the tree in ascending order of cost associated with the set of constraints the optimal solution is
guaranteed to be found.

Local path planning
While a map might accurately reflect the outline of an environment, obstacles, humans or other vehicles
cannot always be accounted for. Furthermore, the complexity of a multi-robot path finding problem often
necessitates an abstraction of the environment and a simplification of the robots’ motion model such that
resulting planned trajectories contain significant uncertainty or consist of only a sparse set of waypoints.
For these reasons, a local planner must usually also be employed to execute a given global plan. In the
following, a selected overview of existing approaches to local planners is given.

If reaction to unforeseen obstacles is not required due to operation in a controlled environment, a local
planner  that  executes  the  global  plan  in  accordance  with  the  robot’s  kinematic  constraints  may  be
sufficient. Given a robot state x= ( x , y ,θ ) , such a planner describes a control law u that regulates the

tracking error xe=( xe , ye ,θe )  to 0, where the error term generally describes the deviation of the robot

state from the path. In Pure Pursuit (Coulter, 1990) this error term is defined with respect to a look ahead
point that is located on the path in some defined distance ahead of the robot. A similar approach is also
taken in (Indiveri, 1999).

The dynamic window approach (Fox et al,  1997) describes a simple yet effective optimization-based
model-predictive controller  (MPC).  It  employs the simplification of  reducing the search space to  all

trajectories  x=f ( v ,ω )  where  v is  a  constant  linear  velocity  and  w is  a  constant  angular  velocity,

limiting  x to  circular  arcs.  It  is  further  demanded that  (v ,ω )∈V  where  V describes  the  dynamic
window and only includes such pairs  (v ,ω ) that do not result in a collision with obstacles while also

being feasible given acceleration limits. The optimal trajectory x* ( v , ω)  is found by minimizing a cost
term G (v ,ω ) . In the original publication by Fox et al, (1997), the cost term of:

G (v ,ω )=σ ( α⋅heading ( v ,ω )+β⋅dist (v , ω)+γ⋅vel (v ,ω )) (Eq. 5.1)

punishing deviation from global path in form of heading (v ,ω ) , proximity to obstacles in dist (v , ω)  as
well as low velocities in vel ( v , ω) , is proposed. In the fashion of MPC, x*  is executed not for its full

planned horizon, but only for a relatively small period of time before a new trajectory is optimized for
again.

In the Time Elastic Band (TEB) Planner (Roesmann et al, 2012), an optimal discretized trajectory B*   is

computed where B*  is a sequence of tuples of poses, augmented by time differences. 

B*
=arg  min  ( B )∑ i

k i f i (B )          (Eq. 5.2)
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Here  fi(B) are  individual  cost  terms  weighted  by  ki(B),  which  either  penalize  non-adherence  to
kinodynamic constraints or act as either attracting or repelling forces on the individual time-augmented
poses within the trajectory. The latter forces make the trajectory behave in a fashion akin to an elastic
band –  stretching  around obstacles  and contracting  in  their  absence  –  serving  as  namesake  for  this
approach.

Collision avoidance
Planning motions of manipulators and robots so that collisions with workspace limits and obstacles do not
occur has been an active research topic for decades. There are two approaches, which have been of the
most interest in practice, heuristic potential field approach (Khatib, 1985; Yong & Narendra, 1992) and
sampling based probabilistic roadmap approach (PRM) (Kavraki et al, 1996)

In potential field approach, each obstacle and manipulator are assigned a potential field function, which
makes  them to  repel  each  other.  The  path  planning  the  tries  to  navigate  along  potential  valleys  in
workspace.  Problems  in  this  approach  include  high  computational  complexity  and  difficulty  to  find
efficient potential functions. Several functions have been proposed and used mostly for low degree of
freedom robots (Wang et al, 2000; Bounini et al, 2017).

In sampling based probabilistic map approach, the obstacles and the manipulator are modelled in some
way that allows checking of collisions. Collision detection is a widely studied area and efficient real time
algorithms have been developed and applied in e.g. 3D game engines. The collision detection systems
usually contain  two phases:  broad phase  and narrow phase.  Broad phase  contains  checking whether
various objects exist in the same region in 3D space. The most applied technique in broad phase is the use
of octree data structure to divide space in eight subspaces and those again in eight subspaces and so on
(Meagher, 1980). In narrow phase, pairs of objects or surface primitives are checked for collisions. This
can be done using straight forward analytic geometry computations or by using more general algorithms
developed for this purpose. One of the most used algorithms in 3D game engines is Gilbert-Johnson-
Keerthi (GJK) algorithm (Gilbert et al, 1988) and its further variations.

When setting up a sampling based probabilistic map, a set of manipulator configurations, in which no
collision occur, are chosen randomly. The number of configurations in this set depends on the complexity
of  the  environment and manipulator.  The connections  between these configurations,  i.e.,  manipulator
movements from one configuration to another,  are then checked using some simple local planner.  In
addition,  some measure  for  the  distance  of  the  connection  is  recorded for  valid  connections.  These
configurations and distances between them represent nodes and connections in the graph representation of
the map for collision free path planning. The construction of the map graph can be done once the machine
is settled in the work area and it is allowed to take some computing time. 

During the operation, the manipulator is typically commanded to move from current start configuration to
some target configuration. These start and target configurations are added to the map graph by finding
collision free connections to some nearest nodes in the graph using the local planner. This operation is the
most  time-consuming  part  of  work-time  operation.  However,  for  point-to-point  movements,  the
movement type is free; it does not have to be e.g., linear and the local planner can be very simple.

The basic form of probabilistic road map (PRM) planner is a multi-query planner, where pre-processing is
used to build a map which can be used for planning trajectories between any start and goal configurations.
Other approach is single-query planning with no pre-processing, where paths are planned using random
sampling for each start and target configuration separately. Most popular is rapidly-exploring random
trees (RRT) approach, where the path from start to target is searched by using RRT algorithm to grow a
random tree from both ends toward each other (LaValle & Kuffner, 2015; Kuffner & LaValle, 2000). A
review of sampling-based path planning algorithms is e.g., in (Karaman & Frazzoli, 2011).
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This technology becomes quite relevant in the case of mining booms, which have to traverse narrow,
winding tunnels full of obstacles. This machines usually also require complex inverse kinematic models
to calculate the joint positions that correspond to given locations; and visual servoing which was already
mentioned in section 5.2.1.2.

5.2.2.3 Progress beyond the SoA  

The expected outcomes of the project are the following:

Extend VDA5050 standard
The  current  standardized  interface  for  AGV  communication  between  AGVs  and  master  control
systems  is  known  as  VDA5050.  The  current  state  of  the  vda5050  enables  the  control  of  a
heterogeneous fleet of vehicles. This control is mostly directed from the fleet management to the
vehicle. In the case of an obstacle, there is none communication in the other direction. This means
that a vehicle cannot report the current situation to the fleet management system, in order to avoid
further  usage  of  the  blocked  passage  in  newly  created  vehicle  trajectories.  For  this  reason,  the
vda5050 needs to be expanded with a way to communicate a possible blockage in the topology to the
fleet management system. When the reporting is done, the fleet management system can cooperate
with the vehicle to solve the blockage. One solution could be to allow the vehicle to temporarily leave
its  designated  path,  for  this  the  fleet  management  system needs  to  ensure  the  absence  of  other
vehicles  nearby,  which  could  collide  with  the  blocked  vehicle,  for  the  duration  of  leaving  the
designated  path.  The  path consists  of  a  sequence of  entities  in  a  graph-based  abstraction  of  the
surroundings. Each entity has a physical manifestation in the environment, which gets exclusively
reserved for a specific vehicle for a calculated time window. If a vehicle has the permission from the
fleet management system to temporarily leave its previous computed path, it needs to incorporate the
new entities  in  its  path while  considering the physical  manifestation  of  each  entity.  The  current
version of the vda5050 only supports the specification of a radius for the permitted deviation. This is
not always enough since the radius is specified around the next goal coordinate and not on a variable
length across a graph edge. In addition, the physical manifestation of the graph-based topology can
support the specification of a capacity, in order to allow vehicle specific collision avoidance strategies
within the defined area. This also enables autonomy of the vehicle, since the collision avoidance runs,
as safety-critical application, on the vehicle itself. Another possible solution is a replanning request
via an extra communications channel in the VDA5050. This case is useful, if the blockage is judged
to be impassable by the vehicle. In this case the fleet management system needs to abort the current
path and compute a new one, while avoiding the recently found blockage. Furthermore, this solution
might include the replanning for serval vehicles, which are standing behind the blocked vehicle.

Scale Global Path Planning
While the reservations of the graph entities are based on time-windows, the coordination is done by a
modified version of the context-aware route planning algorithm (Mors et al, 2010).  In their paper, ter
Mors  et  al.  present  the  CARP algorithm in  a  single  thread  variant.  To promote  scalability,  this
algorithm should be parallelised. In order to estimate times-windows which are precise as possible,
the vehicle's dynamics must be able to be reproduced as well as possible. However, the solution must
not be too specific, as this would limit its use in heterogeneous fleets. One way of estimating the
times is to use a neural network, which could be trained based on real recorded data.

Integration of reserved subspaces into local planner
The local planners outlined in 1.1.2 do not explicitly model multiple robots but treat them as obstacles
from the perspective of the respective planned robot. Depending on use-case and environment, this
may result in poor performance or even deadlocks. By reserving subsets of the configuration space
over defined time windows in the global planning stage within the FMS, we account for the plans of
multiple robots. This however must be synchronised with the local planner instances responsible for
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trajectory execution on the robots, which is not supported by the ones currently widely in use. We
therefore intend to integrate the reserved subspaces into a local planner as well as the communication
between FMS and AGV.

Advance control and planning methods for collision avoidance
Collision avoidance and trajectory planning algorithms must be able to determine workspace of the
machine as well as generate safe and collision free paths. Obtained trajectories should be possible to
validate before execution.  Cartesian control  method and visual servoing is needed for controlling
machines to find objects accurately. DTs and HIL simulations are used to verify that this chain of
technologies work before it is used in a real environment.

Custom solution inverse kinematics of the charging boom
Kinematic structure of charging booms differs from industrial robots and a custom method for solving
inverse kinematics must be developed. In a usual charging boom, there are 6 rotational axes. It is
useful to notice some features of the kinematic structure of a charging boom: a) Axis of the two last
joints intersect b) Axis of the joints 2, 3 and 4 are parallel c) Axis 2, 3, 4 and 5 are in same plane.
These features can be utilized in solving the inverse kinematics problem.

Inverse  kinematics  usually  give  several  possible  solutions  (configurations),  which  allow robot  to
reach the goal position and orientation. Usually, the solution that gives joint values closest to the
current joint values is selected. During the execution of the trajectory changes on the configuration
are  not  allowed.  In  mining booms,  the  movements  of  the  joints  are  much more limited than  in
industrial robots. It is very likely, that in some situations it is not possible to move from the current
position to goal position without changing a configuration. A method for handling this situation must
be developed. Since rotation of the tool around z-axis is not relevant during the charging operation, it
is possible to select this freely. This gives us more freedom for path planning. This custom inverse
kinematics solution could be used for validating the planned trajectory of a mining boom before
execution  of  the  automatic  movement.  It  could  also  be  used  as  an  online  cartesian  set  point
calculation tool.

5.2.2.4 Requirements  

ID Requirement Comments
R34-
D4.1

Robots managed within the FMS must have
access  to  appropriate  on-board  sensors  to
effectively detect obstacles and humans

R35-
D4.1

Robots must possess an accurate estimate on
their own pose at all times

Posible solutions:
 Graph-based  representation  of  the

environment  for  trajectory  planning
(FMS)

 Automatic  loading  and  unload
mechanisms of the AGV

 Simulation of the AGV
Table 10: Path planning and real-time decision-making requirements

5.3  BB10 requirements

The next table summarizes the requirements for Building Block 10, integrating the ones defined in D2.3
with  the  new  ones  defined  for  each  tecnology  in  the  different  tables  available  insection  5  of  this
document.

77 



IMOCO4.E – 101007311
D4.1 Requirements for advanced motion control (first iteration) Public (PU)

ID Requirement Priority Verify Tasks
R219-D2.3-
B10-sw

The control system algorithms can be integrated in a real
HIL testing environment.

M T T4.5

R220-D2.3 The LIDAR sensor  must  be suitable  for  the  usage  of
SLAM.

M D T4.5

R221-D2.3 Enough processing power is needed to work with real-
time  sensor  data  (for  localisation  and  navigation
calculation).

M D T4.5

R222-D2.3-
B10-sw

Visual servoing for motion control is based on real-time
camera systems integrated into the control system.

M T T4.5

R223-D2.3-
B10-sw

Path planning algorithm must be possible to be done in
near-real-time in the control system.

M T T4.5

R224-D2.3-
B10-sw

Collision avoidance must be possible to execute in real
time

M T T4.1,
T4.5

R225-D2.3-
B10-sw

The machine vision algorithms used in visual servoing
comprise  of  ML open-source libraries,  i.e.  compatible
with BB8.

S T T4.5

R226-D2.3-
B10-sw

The libraries and algorithms used must be open source
or industrial standard.

M I T4.5

R227-D2.3-
B10-sw

Possible  to  port  different  programming languages and
operating systems/embedded control systems

M I T4.1
T4.5

R228-D2.3-
B10-sw

The  calibration  and  parametrisation  of  the  algorithms
and sensors related must be able to be configured on-
site.

M T T4.5

R229-D2.3-
B10-sw

The motion control  algorithms are intuitive to operate
from a usability perspective.

M T T4.5

R230-D2.3-
B10-sw

Path generation should work automatically with minimal
input from the operator

M T T4.1,
T4.5

R231-D2.3-
B10-sw

User can intervene automatic path execution safely M T T4.1,
T4.5

R232-D2.3 The  short-term  future  path  of  the  robot  should  be
predictable for human traffic participants.

S D T4.1
T5.1

R233-D2.3 Path planning should take into account the presence and
movement  of  human  traffic  participants  and  generate
cooperative movement behaviour.

C D T4.1
T5.1

R234-D2.3-
B10-sw-SAF

The automatic movements are tolerant to failures of the
control system (servo drives, sensors, actuators, software
singularities) 

M T T4.1
T4.5

R235-D2.3-
B10-sw

Measurement  outliers  and  incomplete  data  (LIDAR
data)  should  not  lead  to  dangerous  or  unexpected
behaviour. 

M T T4.1,
T4.5

R236-D2.3 The optimised Neural Networks must be able to run on
the existing hardware (I.MX), e.g. Nvidia Jetson Or the
mini-pc  

M D T3.3,
T3.4

R237-D2.3 The FPGA hardware shall not cost more than 1500€ and
the embedded hardware not more than 500€.

M D T3.3,
T3.4
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R238-D2.3-
P5-hw

The  target  cost  of  the  goods  in  the  visual  servoing
application  for  the  camera  system  (excluding
servomotors and drives) < 1000€.

M I T4.1
T7.1

R239-D2.3-
B10-sw

Visual  servoing and motion control  algorithms related
are  modular  so  that  these  can  be  ported  to  other
manipulators

W T T4.1,
T4.5

R240-D2.3-
B10-sw

Algorithms can be adapted/extended to different sensor
types and boom types.

W T T4.1,
T4.5

R241-D2.3-
B10-sw

The implemented motion control algorithms are directly
interoperable  with  a  HIL  toolchain  and  dynamic  DT
counterpart of the boom.

M I T4.1,
T4.5

R242-D2.3-
B10-sw

Algorithms can be tested and verified in a simulation
environment with DTs.

M I T4.1,
T4.5

R243-D2.3-
B10-sw

The motion control algorithms are fail-safe M T T4.5

R244-D2.3-
B10-sw-SAF

The  algorithms  must  comply  with  mobile  machinery
directives

M T T4.1,
T4.5

R32-D4.1 Object detection must work in harsh environments with
varying lightning conditions and dark surfaces

R33-D4.1 The  object  detection  algorithm must  provide  accurate
position information for the boom control in real time

R34-D4.1 Robots managed within the FMS must  have access to
appropriate  on-board  sensors  to  effectively  detect
obstacles and humans

R35-D4.1 Robots must possess an accurate estimate on their own
pose at all times

Table 11: BB10 requirements
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6 Real-Time Smart-Control Platform (BB4, Task 4.6)

6.1 Introduction

Motion control systems require a fast reaction time in order to interact with the environment. These small
reaction  windows need the  control  system to  work  in  real  time  at  high  frequencies,  often  requiring
specific hardware platforms or modified software layers to ensure a regular update rate. In this section we
will  discuss  some  of  these  hardware  and  software  solutions  for  real-time  smart  control  and  data
processing.

6.2  State of the Art

6.2.1 Hardware platforms

In the last years,  common single- or multi-core architectures have become uncapable of fulfilling the
demand for high efficiency required by many industrial  applications,  such as the latest  video coding
standards, or by some execution contexts, like security, medical imaging and video processing. This is the
reason why dedicated logic to process such applications is being used more and more alongside software
cores, resulting thus in heterogeneous platforms. 

Many control applications expect strictly periodic and deterministic execution of control which can be the
most challenging part of their design, particularly in multi-application scenarios. This imposes several
important  requirements  on  the  target  implementation  platform.  Composability,  predictable,  and
determinism are the three most notable ones.

Some of the most well-known predictable multi-core platforms for this kind of deterministic control are:

 CompSOC: this platform ensures deterministic and interference-free execution. (Goossens et al,
2017). It is a tile-based embedded platform of processor tiles, local and shared memories, and
interconnections. The platform has three MicroBlaze processor tiles connected through shared
memory.

 T-CREST (Schoeberl et al, 2015): it targets safety-critical applications by optimizing the Worst-
Case Execution Time (WCET) of the application using predictable hardware architecture.

 FlexPRET (Zimmer et al,  2014): It  is a multi-threaded processor which targets mixed-critical
implementations.  The  applications  running  on  the  platform are  either  hard  real-time  threads
(HRTT) or soft-real-time threads (SRTT).

 PTIDES (Derler et al, 2008): it’s a programming model for cyber-physical systems and a special
implementation  of  a  discrete-event  model  of  computation.  In  PTIDES,  every  hardware
component (such as sensors and actuators) and applications (such as control) are actors which
communicate through time-stamped events.

In some applications,  adaptivity can be an essential  necessity.  This can be granted by leveraging on
reconfiguration,  but  hardware reconfiguration is  still  a  research niche,  since execution efficiency and
flexibility are contradicting requisites, hence complicating the design and management of heterogeneous
substrates, which have to also comply with ever-shortening time to market.

To this  regard,  different  studies  (Palumbo et  al,  2019;  Palumbo et  al,  2017;  Yan  et  al,  2012)  have
demonstrated that  adopting a Coarse-Grain Reconfigurable (CGR) hardware reconfiguration approach
can aid in providing flexibility and adaptation to changeable functional and non-functional requirements;
nonetheless, their main issue is still the complexity of their design, which has to cover aspects such as
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resource mapping, run-time management and optimization. As a result, automated methodologies for their
design and management are becoming a must.

Within  the  related  literature,  the  issue  of  developing  automated  methodologies  for  the  design  and
management of CGR devices has been addressed through model-based automated and semi-automated
strategies. On the one hand, a first attempt to exploit dataflow models to achieve reconfiguration has been
made by Beaumin et  al.  (2010),  whose reconfigurable  coprocessor  customizes a  substrate of  generic
processing units (software cores executing actors) and hardware FIFOs. On the other hand, Ansaloni et al.
proposed a novel scheduling strategy to efficiently map operations on CGRA architectures (Ansaloni et
al, 2012). Finally, a more resolute step towards a complete dataflow based reconfigurable accelerators
design  support  is  the  Multi-Dataflow  Composer  (MDC),  a  tool  able  to  automatically  generate  a
reconfigurable  accelerator  starting  from  the  dataflow  models  of  the  desired  functionalities  by
multiplexing in time common actors among them. Over the years, MDC has been coupled with High
Level Synthesis (HLS) tools to derive the complete hardware specification in a totally automated way

6.2.2 Software Virtualization

Several open-source projects have aimed at creating a real-time version of the Linux operating system.
These attempts can be classified in the following categories (Lipari & Scordino, 2006):

 Real-time Linux

These projects have aimed at increasing the predictability of the standard mainline kernel. Robert
Love introduced the Preemptible Kernel patch (Heursch et al, 2003). This mechanism, integrated
into the 2.6 kernel series, has made the kernel fully preemptible. Then, the popular PREEMPT
RT project has aimed at shortening the maximum latency experienced by a real-time task by
increasing timers’ accuracy and kernel concurrency and reducing non-preemptible sections. Very
recently, De Oliveira et al. (2019) have proposed an automata-based model for describing and
validating the behavior of threads in PREEMPT RT on single-core systems. In parallel, the Linux
kernel  community  has  implemented  a  real-time  CPU scheduler,  called  SCHED  DEADLINE
(Lelli et al, 2016). It allows specifying the amount of CPU time reserved to a real-time task with a
per-task timing granularity. Despite these projects having certainly contributed to improving the
responsiveness of Linux, they have not been capable of reaching the performance needed for the
fast control loops implemented nowadays in industrial automation.

 Dual kernel

The  “dual-kernel”  approach  consists  of  creating  a  Hardware  Abstraction  Layer  (HAL)  and
modifying the interrupt handling routines for executing a tiny real-time operating system (RTOS)
prior to Linux. The Linux kernel and its tasks are thus executed at a lower priority than the real-
time tasks. This approach, originally introduced by RT-Linux (Yodaiken et al, 1999), has been
then evolved by the RTAI (Mantegazza  et  al,  2000) and Xenomai projects,  introducing the
concept of “execution domains” for partially overcoming the original limitations of kernel-space
programming. These projects have successfully proven the feasibility and the performance of the
proposed approach (Barbalace et al, 2008).

 Partitioning hypervisor

The most recent research direction in various application domains (e.g. automotive) consists in
taking advantage of hardware-assisted virtualization of modern processors for allocating different
physical cores to the execution of components with different timing characteristics. Xen is a type-
1 open-source hypervisor, therefore running on top of the hardware, that can run using both plain
hardware virtualization or exploiting paravirtualization offered by a Linux VM. Thanks to the
device emulation provided by Qemu, it can also run unmodified versions of operating systems
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(e.g. Windows). RT-Xen (Xi et al, 2011), (Xi et al, 2014) was an attempt at creating a real-time
version of Xen. More recently, the community developing the Xen hypervisor has implemented
the “null” scheduler (Abeni & Faggioli, 2019), which statically assigns each virtual CPU to one
and  only  one  physical  CPU,  avoiding  any  scheduling  decision  —  therefore,  reducing  the
overhead. To simplify the design and avoid the need of device drivers in the hypervisor itself,
Xen relies on a special privileged guest called “dom0”, usually consisting of a Linux OS, that
boots before normal guests (called “domU”). This constraint represents an issue in the embedded
domain, where a short boot time of the guests is often a mandatory requirement. A very recent
attempt sponsored by Xilinx aims at removing the need of Xen’s “dom0” domain at least for
ARM processors. KVM is the standard support for adding a hypervisor layer to the Linux kernel.
A recent work has shown that KVM can obtain lower worst-case latencies than Xen (Abeni &
Faggioli,  2019).  Some kernel  contributors  have  also  worked  on  adapting  KVM to  real-time
workloads (Zhang et al, 2011). In parallel, Siemens has developed a tiny open-source hypervisor,
Jailhouse (Ramsauer et al, 2017), targeting the embedded safety critical domains. Very recently,
the Bao hypervisor has been proposed (Martins et al, 2020) to deliver a virtually transparent, and
highly secure partitioning layer for the most critical situations.

 Isolating hypervisor

Contention on shared hardware resources, such as DRAM, bus or caches, undermines real-time
performance in a mixed-criticality context. This has been studied by Cavicchioli et al. (2017) and
Danielsson  et  al.  (2019),  and  also  discussed  by  Capodieci  et  al.  (2020)  in  the  context  of
automotive applications. Hardware solutions for cache management that exist are either rigid and
obsoleted, or virtually not available among the industrial computing platform segment. This has
been the motivation for elevating the hypervisor concept up to the hardware isolation role, which
has been shown to be effective in restoring memory access determinism in high-performance
embedded systems. Software cache partitioning has been demonstrated to be a key feature for
real-time systems (Kloda et al, 2019) and military applications (Saudo et al, 2020), and it has
been proposed on the Arm implementation of Jailhouse, Xen (Miccio and Solieri, 2019) and Bao
(Martins et al, 2020).

 Industrial automation

Most of the work in the literature for industrial automation has exploited virtualization only for
cloud and fog computing (Givehchi et al, 2014). Among the notable exceptions, Mahmud et al.
(2014)  evaluated the feasibility  of  Xen-based virtualization in  a  multicore  distributed system
running RT-Linux. Azarmipour et al.  (2018), instead, discussed design issues of a virtualized
system based on PikeOS. Moreover, both these works did not measure the performance of field-
buses like EtherCAT. In (Scordino et al, 2020) a couple IMOCO4.E partners designed a multi-OS
platform for industrial automation. The platform was based on the Xen hypervisor and capable of
executing a general-purpose OS (i.e.  Windows or Linux) and an RTOS for real-time control
through the EtherCAT fieldbus.

6.2.3 Real time communication

As pointed out above, systems designed with virtualization report great advantages related to security,
cost, reliability, availability, adaptability (Obasuyi et al, 2015) making it a valid choice with remarkable
performance.  In  recent  years,  paravirtualization  exhibited  higher  performance  compared  to  full
virtualization (Motika & Weiss, 2012; Fayyad-Kazan et al, 2013) (where all the hardware is emulated like
Qemu). In addition to partitioning computing resources, virtualization enables multiple applications to
gain access to the hardware resources on the host machine (Obasuyi et al, 2015). 
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One of these hardware resources concerns connectivity, as the scarcity of the communication connectors
raises new challenges for hypervisors, which need to also act as a transparent proxy between the network
and  the  guest  machines.  Techniques  have  therefore  been  proposed  in  order  to  enable  time-sharing
mechanisms of shared hardware resources to all guest machines through different protocols. The original
Ethernet has been extended to allow sharing a Network Interface Card (NIC) between multiple guest
machines (Motika & Weiss, 2012), where, once again, it is shown that paravirtualization offers better
performance compared to emulated contexts.

Moreover,  the autonomous systems,  targeted in the IMOCO4.E project,  bring the requirement to use
specific network protocols where temporal behavior control is a key. The most well-known protocol used
in system automation is the Controller Area Network (CAN) (Gergeleit et al, 1994). It is a message-based
protocol which does not need a central host computer. An extension for virtual environment vCAN has
been proposed with great results (Herber et al, 2014; Breaban et al, 2016).

One of the most used protocols by IMOCO4.E partners is the field-bus protocol EtherCat  (Jansen &
Buttner,  2004).  This  protocol  is  suitable  for  both hard and soft  real-time computing requirements  in
automation  technology.  It  has  been  used  in  a  real-time  virtualized  context  for  industrial  automation
(Scordino et al, 2020). EtherCat has proven to be a suitable choice for real-time control systems with
guaranteed performance (Huang & Chien-Hao,  2014).  However,  EtherCat  has strong requirements in
terms of hardware support where a specific ethernet card needs to be present.

A more recent technology providing similar guarantees is named Time Sensitive Network (TSN) (Farkas
et al, 2018). TSN is a set of standards that extend the Ethernet protocol by focusing on time (Finn, 2018).
The desirable properties that a hypervisor should fulfill to be compliant with TSN protocols have been
stated in (Leonardi et al, 2020), and in particular the limit of some scheduling policies and granularities to
meet the timing requirements. An early framework has also been proposed (Caruso et al, 2021) in order to
assess the viability of using TSN in a virtualized environment.

6.3 Progress beyond the SoA

Major Contributions are mentioned below to progress beyond the SoA. These can be summarized as

 Multi-sensor multi-rate control.

In Vision-in-the-Loop control for achieving the high-precision high-throughput for motion control
systems applications, a fusion of multi-sensors is required. The sensor fusion between encoder and
vision to improve sensing accuracy with multi-rate sensing is necessary.

 Smart scheduling of Vision-in-the-Loop using parallel and pipelined processing.

Once the sensor data is fused and the sensing accuracy of the motion control system is improved,
the  control  performance  of  the  system  should  be  improved.  Scheduling  techniques  e.g.,
parallelism,  pipelining,  and  approximation  can  be  employed  to  increase  the  control  loop
performance.
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6.4  BB4 requirements

ID Requirement Priority Verify Comments Tasks
Interfaces and connectivity
R114-
D2.3

BB4 shall offer industry standard interfaces 
to:

1. Encoders (e.g. Biss-C, EnDAT)

2. Drives (e.g. EtherCAT) 

3. Layers 1 and 2 (e.g. EtherCAT)

M I COTS 
components are
needed to 
interoperate 
with TSN

T3.1,
T4.1,
T5.1

R115-
D2.3

BB4 must be able to run on an “ARM” based
platform. 

M I T4.1

R116-
D2.3

BB4 can be connected to Matlab/Simulink C A T4.1

Maintainability (modularity, analysability, testability)
R117-
D2.3

BB4 shall be ready for the vertical distribution
of smart control algorithms

M D Interfacing with
BB5

T4.1

Performance
R118-
D2.3

BB4 shall support control loop update rates of
at least 20 kHz

M D T3.1
T4.1

Compatibility (interoperability, co-existence)
R119-
D2.3-
B5

BB4  should  be  compatible  with  code
generated from Simulink

M D Interfacing with
BB5

T4.1

R120-
D2.3

BB4  shall  be  compatible  and  portable  with
x86-based platforms

S D T4.1

Portability (adaptability, replaceability)
R121-
D2.3

BB4  shall  offer  customizability  to  run  any
combination  of  custom  control  loops  in
parallel, including MIMO control loops

M D T4.1

R122-
D2.3

BB4 shall offer customizability such that non-
standard tasks (i.e., tasks which are typically
performed  in  research)  can  be  performed.
Examples  include  flexibility  in  allowed
controller  structures  and
reference/feedforward signals.

S T T4.1

Cost
R123-
D2.3

BB4 shall have a target cost of goods of €1000
for a basic version

M I T4.1

Table 12: BB4 requirements

7 IMOCO4.E Building Block connections
The IMOCO4.E project will feature several use cases/pilots and demonstrators. These will be related to
some  of  the  BBs  contained  in  layer  2  and  more  related  to  smart  control.  Figure  7.1  details  the
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relationships between use cases/pilots/demonstrators and BBs, as well as the partners responsible for this
connection.

BB4 BB5 BB10
Use Cases UC1. Industrial drive for

smart  mechatronics
applications

UNIBS & UWB

UC2. CNC for integrated
machine  tool  and  robot
control

FAG & TEK

UC3.  Tactile  robot
teleoperation
UC4.  Advanced  and
intuitive  robot  control
and programming

UWB UWB

Pilots P1. 3D printing SIOUX SIOUX
P2.  Semiconductor
manufacturing

EVI TUE & ITEC

P3.  High  speed
packaging

CRIT

P4. Healthcare robotics PMS & TUE PMS
P5.  Mining/tunneling
robotic  boom
manipulator

UNIMORE NORMET

Demonstrators D1.  High precision  cold
forming  of  complex  3D
metal parts
D2.  Smart  sensoring  on
injected plastic parts

UNIMORE

D3.  Autonomous  intra-
logistic transportation

STILL

D4.  Vision-based  AI
pick & place robotics for
randomly  arranged  and
differently shaped bottles

Table 13: Building block connection matrix 
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8 Conclusion

D4.1 provides a revision of the shortcomings, state-of-the art and contributions of IMOCO4.E related to
smart control.  The focus of D4.1 is on smart control (mainly related to Layer 2). There are different
technologies  and  approaches  that  are  introduced  discussed  that  will  be  the  core  of  WP4.  It  is  also
illustrated how these different components are connected to different BBs (mainly BB4, 5 and 10). 

D4.1 also integrates the generic requirements related to each BB (mainly BB5, BB10 and BB4, in this
order)  gathered  from  D2.3.  Then  more  specific  requirements  are  introduced  related  to  identified
shortcomings of current approach and state-of-the-art. D4.1 also outlines how IMOCO4.E will address
these identified shortcomings and necessities for the future with specific contributions beyond the state of
the art.
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