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Abstract—Mechatronic systems have increasingly stringent
performance requirements for motion control, leading to a situa-
tion where many factors, such as position-dependency, cannot
be neglected in feedforward control. The aim of this paper
is to compensate for position-dependent effects by modeling
feedforward parameters as a function of position. A framework to
model and identify feedforward parameters as a continuous func-
tion of position is developed by combining Gaussian processes
and feedforward parameter learning techniques. The framework
results in a fully data-driven approach, which can be readily
implemented for industrial control applications. The framework
is experimentally validated and shows a significant performance
increase on a commercial wire bonder.

I. INTRODUCTION

Increasing performance requirements for motion control
leads to situations where position-dependency of mechatronic
systems cannot be neglected anymore. An example is the wafer
stage, where a flexible mode of a wafer is observed differently
for each position [1]. Furthermore, H-drive machines, such as
large-format printing systems, suffer from position-dependent
dynamics due to a changing configuration [2]. Traditionally,
position-dependency is neglected and the feedforward con-
troller is kept constant over the machine operating range,
resulting in suboptimal performance. Recently, due to the
developments in computational power, data-driven techniques,
such as Gaussian Processes (GPs), are getting more relevant
for motion control.

Traditional Linear Time-Invariant (LTI) feedforward design
attempts to compensate for a known reference signal of a
system. Typically, feedforward controllers are based on mod-
els. For low frequencies, motion systems can generally be
modeled as a rigid-body, resulting in the well-known accel-
eration feedforward. Acceleration feedforward controllers can
directly be extended to compensate for higher-order or non-
linear dynamics such as flexible mechanics [3]. The parameters
used in traditional LTI controllers can be tuned manually in a
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straightforward manner [4]. Nevertheless, traditional LTI feed-
forward does not compensate for position-dependent effects.

Position-dependent feedforward design can compensate for
position-dependent behavior of systems. For this purpose,
feedforward parameters can be determined in a grid and
estimated with parametric regression techniques such as linear
interpolation. However, interpolations have approximation er-
rors since the dependency between position and feedforward
parameters is generally unknown.

High motion control performance for systems with position-
dependent dynamics can furthermore be achieved through
the use of Linear Parameter Varying (LPV) or non-linear
inversion-based control of the system. First, LTI dynamics
can be scheduled according to the current configuration of
the LPV system, resulting in high control performance for
e.g. wafer stages [5] or xy-positioning tables [6]. Second,
data-driven learning techniques, such as Iterative Learning
Control (ILC), can be extended to LPV systems, which results
in high performance through learning [7]. Third, a non-
linear inversion-based output tracking solution can be applied,
resulting in asymptotically exact output tracking [8]. LPV
model-free approaches are investigated in [9], directly learning
LPV controllers from data, but are at present not competitive
with model-based designs. The high performance achieved by
using LPV or non-linear control typically requires accurate
and extensive modeling, that is often very challenging and the
high cost and complexity are usually not justified for industrial
control applications.

Although feedforward design has improved significantly
compared with traditional acceleration feedforward, a feedfor-
ward with systematic tuning for position-dependent effects, ca-
pable of estimation at any arbitrary position, is currently lack-
ing. This paper models feedforward parameters as a continuous
function of position through a GP [10], [11], which allows
for the compensation of position-dependent effects without
a full LPV or non-linear model. In addition, a GP is non-
parametric and therefore does not require an assumption on
the parametric form between the position and the feedforward
parameters. In this paper, the feedforward parameters of a
system are learned in a trial-to-trial fashion using ILC with
Basis Functions (ILCBF) [12]. The contributions include:



C1 a generic framework to model feedforward parameters
as a function of position using GPs, which can be readily
implemented for industrial applications,

C2 ILCBF to automatically learn feedforward parameters
for multiple fixed positions, suitable for industrial ma-
chines, that are directly used in the GPs,

C3 application and validation of the framework to a state-
of-the-art industrial experimental setup, showing the
capabilities of the framework.

The outline of this paper is as follows. In Section II, the prob-
lem that is considered in this paper is defined. In Section III,
the method for modeling feedforward parameters as a GP and
an approach to automatically learn feedforward parameters
with ILCBF is described, leading to contributions C1 and
C2. In Section IV, a case study on an experimental setup is
performed, constituting contribution C3. Finally, in Section V,
concluding remarks are given.

Notation: Systems can be single-input single-output or
multiple-input multiple-output with ni inputs and no outputs.
All systems are discrete-time, unless stated otherwise, with
discrete-time k ∈ {0, 1, . . . , N − 1}. Continuous time sys-
tems are transformed in their discrete-time counterpart using
finite difference approximation. The trial number is indicated
with the index j. Signals are assumed to be of length N .
The weighted 2-norm of a vector x ∈ RN is denoted as
∥x∥W :=

√
(x⊤Wx), where W ∈ RN×N is a weighting

matrix. Matrix A ∈ RN×N is positive (semi-)definite if and
only if x⊤Ax ≥ 0, ∀x ̸= 0 ∈ RN and is denoted as A ⪰ 0.

II. PROBLEM DEFINITION

In this section, the problem for determining a position-
dependent feedforward controller is formulated. First, a prob-
lem setup is given, including the systems considered and
the parametrization of the feedforward signal. Second, the
three categories of position-dependent effects in mechatronic
systems considered are elaborated upon. Finally, a hypothesis
of the largest contribution to the position-dependency is made
and the problem addressed in this paper is defined.

A. Problem Setup

The considered class of position-dependent systems are
spatially distributed LTI systems [13]

y(k) = G(ρ, q−1)u(k), (1)

with output y(k) ∈ RN×no , input u(k) ∈ RN×ni , system
G(ρ, q−1) ∈ Rno×ni , the initial position ρ ∈ Rno and q
denotes the forward-shift operator, i.e. q−τa(k) = a(k − τ).
Spatially distributed LTI systems are generally applicable to
systems with slowly varying position-dependency, i.e., the
position-dependency is mostly exerted due to the initial po-
sition and not due to the reference signal. The wire bonder in
Fig. 1 is a benchmark example, since references are relatively
short compared with the machine operating range.

The applied control structure can be seen in Fig. 2. Typi-
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Fig. 1. Commercial wire bonder which is used for the experimental case study.
The system might have position-dependent dynamics, due to the changing
mass distribution.

−

r

f

u ye
C

F

G(ρ)

Fig. 2. Control structure considered in this paper, consisting of feedforward
controller F , feedback controller C and the spatially distributed LTI system
G(ρ).

cally, the design of feedforward controller F tries to reduce
the reference-induced error to zero, i.e.,

e(k) = 0 = r(k)−G(ρ, q−1)u(k),

resulting in the ideal feedforward controller F = G−1(ρ, q−1).
Often, the feedforward design is based on the physical model
of a system. Consider, e.g., a finite-difference approximation
of a (position-independent) mass-damper system

Gmd(q
−1) =

1

m (1−q−1)2

T 2
s

+ d 1−q−1

Ts

,

with Ts the sampling time of the system, m the mass of the
system and a damping coefficient d. Zero reference-induced
error is achieved by the ideal feedforward controller F (q−1) =

m (1−q−1)2

T 2
s

+ d 1−q−1

Ts
. However, due to model uncertainties,

the exact system parameters are unknown and therefore the
controller takes the form

F (q−1) =
[
(1−q−1)2

T 2
s

1−q−1

Ts

] [m̂
d̂

]
= Ψ(q−1)θ,

with ·̂ an estimate or modeled value in the feedforward
parameters θ ∈ Rnθ×ni and the basis function matrix Ψ ∈
Rno×nθ . Due to the position-dependency of system G(ρ, q−1),
best performance is achieved by modeling the feedforward
parameters θ as a function of position.

B. Considered Position-Dependent Effects

Position-dependency of the system G(ρ, q−1) can be caused
by several factors, here separated in actuation, mechanical



ILCBF
at position ρi

ρ1 θ(P ) θ(P∗)
Start Endi = l

i=i+1

ρi

GPyes

no

i = 1

Fig. 3. Schematic illustration of the developed framework, where feedforward
parameters are being modeled as a function of position using a combination
of ILCBF and GPs.

or sensing. First, actuation can cause position-dependency
due to for instance cogging [14] or varying magnetic flux
density [15]. Second, mechanical position-dependency can
directly affect the feedforward parameters that achieve optimal
performance. Examples of such are raster scanning of atomic
force microscopy [16] or position-dependent gantry systems,
such as the large-format printer [2]. Lastly, since sensors
are typically attached to the fixed world and motion systems
are moving by definition, deformations or movements of the
system are observed differently for particular positions. This
is for example seen in lithography, where a flexible mode
of a wafer is observed differently [1]. Due to the high costs
associated with modeling each position-dependent effect and
since manual tuning for all operating positions is infeasible,
a data-driven approach for position-dependent feedforward is
necessitated.

C. Hypotheses and Problem Definition

Often, flexible mechanics and the observation thereof are
the largest contribution of position-dependency of mechatronic
systems, see for instance [1], [17]. This is anticipated due to
the recent developments in lightweight design of mechatronic
systems, typically resulting in more flexible structures. Fur-
thermore, actuation can have significant contribution on the
position-dependency as well, but is generally compensated for
in an earlier step, e.g., by using calibration [18].

Position-dependent dynamics of system G(ρ, q−1) is not
compensated for by using constant feedforward parameters.
Hence, the aim of this paper is to model feedforward pa-
rameters θ as a continuous function of position, such that it
can compensate for any unknown position-dependent effect,
without an LPV model or specification of a parametric form,
that might lead to estimation errors.

III. APPROACH

In this section, feedforward parameters are modeled as
a function of position, such that it can compensate for
position-dependent effects, hence constituting contribution C1.
Furthermore, a data-driven feedforward parameter learning
technique is presented, constituting contribution C2. First,
GPs are investigated, followed by the application of GPs
for feedforward parameters. Third, ILCBF is presented to
learn feedforward parameters for a single position. Finally, an
example and overview of the framework is presented, which
can schematically be seen in Fig. 3.

A. Gaussian Processes

A GP is defined as a collection of random variables f(ρ),
indexed by ρ, such that the joint distribution of any finite
subset of random variables is multivariate Gaussian. A GP is
written as

f(ρ) ∼ GP
(
m(ρ), k(ρ, ρ′)

)
, (2)

which shows a GP is fully defined by the covariance function
k(ρ, ρ′) and the mean function m(ρ),

k (ρ, ρ′) = E [(f(ρ)−m(ρ)) (f (ρ′)−m (ρ′))] ,

m(ρ) = E[f(ρ)].
(3)

The mean function m can be interpreted as the mean at any
input point and the covariance function k as the similarity
between values of f(ρ) on different inputs ρ and ρ′.

B. Gaussian Processes for Position-Dependent Feedforward
Parameters

In this section, feedforward parameters are estimated on test
positions ρ ∈ P∗, given feedforward parameters learned on
training positions ρ ∈ P using GPs, leading to contribution
C1. The test and training positions are defined as

P∗ =
[
ρ1∗ ρ2∗ . . . ρl∗

]⊤ ∈ Rl∗×no ,

P =
[
ρ1 ρ2 . . . ρl

]⊤ ∈ Rl×no ,
(4)

with l∗, l ∈ N the amount of test and training positions,
respectively. Observations of the feedforward parameters, i.e.
θ(P ), are contaminated with noise,

θ(P ) = f(P ) + ϵ, with ϵ ∼ N (0, σ2
ϵ I). (5)

The continuous function of position θ(P∗) and the function
observations θ(P ) are assumed to be random variables and
have a joint multivariate Gaussian distribution[

θ(P )
θ(P∗)

]
∼ N

(
0,

[
K(P, P ) + σ2

nI K(P, P∗)
K(P∗, P ) K(P∗, P∗)

])
, (6)

with covariance matrices Ky := K(P, P ) + σ2
nI ∈ Rl×l,

K∗ := K(P, P∗) = K(P∗, P )
⊤ ∈ Rl×l∗ and K∗∗ :=

K(P∗, P∗) ∈ Rl∗×l∗ , which specify similarity between outputs
on different positions. σ2

n is an approximation of the noise
variance on the observations in (5). Note that the mean
function is assumed to be zero, which is not strictly necessary,
see e.g. [10, Section 2.7]. The joint distribution in (6) can
be conditioned on function observations using Bayes’ rule,
resulting in the posterior distribution

θ(P∗)
∣∣∣[P, P∗, θ(P )

]
∼ N

(
θ̄(P∗), cov(θ(P∗))

)
, (7)

with posterior mean and posterior covariance

θ̄(P∗) := E(θ(P∗)) = K⊤
∗ K

−1
y θ(P ),

cov(θ(P∗)) = K∗∗ −K⊤
∗ K

−1
y K∗.

(8)

In combination with a suitable covariance function, (8) is used
to estimate feedforward parameters, given observations of the
feedforward parameters.



C. Learning Feedforward Parameters using Basis Functions
for a Fixed Position

In this section, feedforward parameters are learned for
multiple fixed positions to serve as training data for the GP,
leading to contribution C2. Here, ILCBF is used to learn the
parameters, but the framework can directly be extended to
other feedforward parameter tuning approaches.

The optimization criterion in ILCBF is specified as [19]

V (θj+1)=∥ej+1(k)∥2
We

+∥fj+1(k)∥2
Wf

+∥fj+1(k)−fj(k)∥2
W∆f

, (9)

with weighting matrices We ≻ 0 and Wf , W∆f ⪰ 0 and θj
the feedforward parameters in trial j. The error ej+1 is

ej+1(k) = S(q−1)r(k)− S(q−1)G0(q
−1)fj+1(k)

= ej(k)− S(q−1)G0(q
−1)

(
fj+1(k)− fj(k)

)
,

(10)

where now, G0 is for instance a nominal model of a position-
dependent system. The feedforward signal is parameterized
in terms of the feedforward parameters θj , i.e., fj(k) =
Ψ(q−1)r(k)θj . The feedforward parameters are updated as

θ∗j+1 = argmin
θj+1

V (θj+1) . (11)

Since the feedforward force is chosen linearly in the feed-
forward parameters, the optimization criterion in (9) becomes
quadratic in θj+1. Hence, an analytic solution to (12) is [20]

θj+1 = Lej +Qθj ,

L = R−1
(
Ψ⊤G⊤

0 S
⊤We

)
,

Q = R−1Ψ⊤ (
G⊤

0 S
⊤WeG0S +W∆f

)
Ψ,

R =
(
Ψ⊤ (

G⊤
0 S

⊤WeG0S +Wf +W∆f

)
Ψ
)
,

(12)

where (q−1) and (k) have been left out for brevity. The
parameter update in (12) leads to monotonic convergence of
∥fj(k)∥, provided matrices We, Wf and W∆f are selected
properly [19]. Robustness, with respect to model mismatch
due to the position-dependent dynamics, can be enforced by
increasing Wf . Now, (12) can be used in combination with the
error in trial j to compute a new set of feedforward parameters
θj+1 for a fixed training position.

D. Developed Framework and Example

The combination of GPs and ILCBF is used to model feed-
forward parameters as a function of position. The framework
is schematically shown in Fig. 3. First, ILCBF is performed
l times on the positions ρ ∈ P , where P is chosen by the
user. Second, the feedforward parameters learned in ILCBF,
i.e. the training data θ(P ), can be used in a GP regression.
Finally, the GP results in the feedforward parameters modeled
as a function of the test inputs P∗, i.e. θ(P∗).

Example 1. Consider the system with a spatially-distributed
mass

Gm(ρ, q−1) =
1

m̄
(
1− 2

(
1
2 − ρ

)2) (1−q−1)2

T 2
s

∀ρ ∈ [0, 1],
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Fig. 4. Example GP regression created using the framework developed of
a system with a spatially-distributed mass. The training data ( ) is used to
create the posterior mean ( ) from (8) and the uncertainty bound θ̄(P∗)±2σ
( ). An accurate representation of the true mass ( ) is achieved with the GP
regression.

with m̄ = 1 kg a nominal mass. The feedforward controller
is designed using acceleration feedforward, i.e.,

fj(k) = Ψ(q−1)r(k)θj = r̈(k)θj .

The feedforward parameters are learned on 4 positions ρ ∈ P ,
with P =

[
0.05 0.35 0.65 0.95

]
, using ILCBF. The feed-

forward parameters have bias with respect to the true system
values due to measurement noise, which is typically observed
in ILCBF [21]. The framework is applied using a squared
exponential covariance function, see e.g. [10, Section 4.2].
Fig. 4 shows how the framework models a position-dependent
feedforward parameter, resulting in an accurate model. ■

IV. EXPERIMENTAL CASE STUDY

In this section, position-dependent feedforward with GPs is
applied to a benchmark experimental setup, hence constituting
contribution C3. First, the example setup is presented, followed
by the application and results of the framework. Finally, a dis-
cussion is presented regarding the outcome of the experiments.

A. Experimental Setup
Position-dependent effects hamper the performance of semi-

conductor back end equipment, such as the commercial wire
bonder seen in Fig. 1. Position-dependent dynamics can be
caused due to several reasons, e.g. position-dependent actua-
tors, flexible dynamics and changing configuration. The wire
bonder consists of two inputs u1 and u2 and two outputs y1
and y2. The feedforward parameters are modeled as a function
of the initial position of the machine for y1 and y2. The
feedforward force f is parameterized using

Ψ(q−1)r(k) =

[
ṙ1(k) r̈1(k) 0 0 0

0 0 ṙ2(k) r̈2(k) ψ2(k)

]
, (13)

with ψ2(k) a non-linear basis function. The references r1
and r2 are polynomial trajectories, see [22]. The feedforward
parameters are defined as

θ =
[
θ1 θ2 θ3 θ4 θ5

]⊤
, (14)
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Fig. 5. Left: Normalized error 2-norm for the first 8 trials of ILCBF in the
center position for y1 ( ) and y2 ( ). Right: Acceleration feedforward
parameters θ2 ( ) and θ4 ( ) for the first 8 trials of ILCBF in the center
position, normalized with respect to parameter θ2.
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Fig. 6. ILCBF will be performed on the arbitrarily chosen training positions
( ) and the learned feedforward parameters on these positions will be used as
training data for the GPs. The framework will be tested and compared on the
test positions ( ), consisting of interpolation and extrapolation on the training
data.

which are used, in combination with the basis function matrix
in (13), to calculate the feedforward force f .

B. Experimental Results

The developed framework is applied to the wire bonder
seen in Fig. 1. First, feedforward parameters are learned on
several positions with ILCBF using 20 trials, as described in
Section III-C. The error 2-norm and feedforward parameters
of the first 8 trials in the center position can be seen in
Fig. 5, which shows that ILCBF has converged. Second, each
feedforward parameter in (14) is modeled as a separate GP, as
seen in Section III-B, by using the feedforward parameters
learned in trials 13 up to 20 on the training positions in
Fig. 6. A squared exponential covariance function is used. For
visualization purposes, the positions P∗ are chosen as a fine
grid covering the operating range of the machine. In Fig. 7
and Fig. 8 the GP regressions of the acceleration feedforward
parameters can be seen and show a significant difference in
the parameters for the operating range of the machine.
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Fig. 7. Normalized GP regression of the acceleration feedforward parameter
θ2, representing the estimated mass of the axis, made using the training data
( ). The feedforward parameters are normalized with respect to the center
value, i.e., θn(P∗) = θ(P∗)/θ(0). The feedforward parameter has a clear
dependency on position 1.
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Fig. 8. Normalized GP regression of the acceleration feedforward parameter
θ4 as a function of position, representing the estimated mass of the axis, made
using the training data ( ). The feedforward parameters are normalized with
respect to the center value, i.e., θn(P∗) = θ(P∗)/θ(0). Position-dependency
is both seen for the y1 and the y2 direction.

To evaluate the performance of the framework, several
test positions other than the training positions have been
chosen, seen in Fig. 6. The GP regressions made with the
feedforward parameters learned on the training positions are
used to estimate feedforward parameters on the test positions
using (8). On the test positions, three methods of choosing
feedforward parameters have been performed:
M1 center, where the feedforward parameters determined in

the center position of the machine are used,
M2 GP, where the feedforward parameters are estimated

using the GP at the given test position,
M3 local ILCBF, where the feedforward parameters are de-

termined at the test position using the method described
in Section III-C.

Here, local ILCBF is performed to serve as a reference frame
to compare the first two methods with. The error 2-norm
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Fig. 10. Time-domain error e1(k) for test position 2, for both center ( )
and GP ( ) feedforward. The maximum error for GP feedforward is roughly
3 times smaller than center feedforward.

for the test positions for all methods can be seen in Fig. 9.
The error 2-norm of y1 in Fig. 9 shows that a significant
performance increase can be achieved when using feedforward
parameters modeled as a function of position by a GP. This
is additionally supported by looking at the time domain
error of y1 for test position 2 in Fig. 10. Furthermore, the
GP feedforward achieves an error 2-norm similar to that of
ILCBF, indicating optimal performance in terms of (9) with
the specified basis function. The error 2-norm of y2 shows
the performance difference for the two methods and ILCBF
is only marginal, showing that the y2 direction does not have
much position-dependency.

C. Discussion of Experimental Case Study

The experimental setup considered has position-dependent
effects, which can be concluded by looking at the feedforward

parameters in Fig. 7 and Fig. 8. For the acceleration feedfor-
ward parameter θ2 in Fig. 7, significant position-dependent
effect is seen. The unusual behavior of the parameter might
be caused due to the periodic magnetic flux density in linear
actuators [15]. Indeed, when measuring the distance between
the peaks in Fig. 7, a distance roughly equal to the magnet
pitch of the linear actuator is observed. The position-dependent
effect is directly seen in the performance difference for y1 in
Fig. 9.

For test positions 1 and 3, the performance for center and
GP feedforward are equal for the y1 direction. This can directly
be explained by looking at Fig. 6 and Fig. 7, that shows test
positions 1 and 3 are located roughly one magnet pitch away
from the center position, resulting in optimal feedforward
parameters equal to the center position.

Compared with the acceleration feedforward parameter θ2,
the acceleration feedforward parameter θ4 in Fig. 8 has con-
siderably less position-dependency. The unusual behavior is
also not observed for θ4, indicating that the magnetic flux
density is not affecting the feedforward parameter as much.
When taking a look at the performance for y2, the difference
is only marginal between the feedforward methods. Therefore,
it can be concluded that for the considered experimental setup,
position-dependent effects in the actuator heavily outweigh
position-dependent effects in the mechanics or sensing.

V. CONCLUSION

The developed framework models feedforward parameters
as a function of position with GPs, resulting in constant per-
formance for any arbitrary position. The training data for the
GPs are determined using ILCBF, but can be extended to any
feedforward parameter tuning approach. Since the position-
dependent effects of motion systems are typically unknown or
hard to model, non-parametric regression techniques, such as
GPs, work especially well. GPs, in combination with a data-
driven feedforward parameter tuning approach, results in a
framework where data outweighs assumptions on the position-
dependency of a motion system. Lastly, experiments on a
complex motion system show that the framework can improve
control performance significantly by compensating for, e.g.,
an unknown position-dependent magnetic flux density. Future
research on this topic is directed at optimal and automatic
computation of the training positions using sensor placement
techniques.
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