
A Structured Inference Optimization Approach for
Vision-Based DNN Deployment on Legacy Systems

Devi Darshini Manickam∗†, Sajid Mohamed∗, Vibhor Jain†, Dip Goswami†, Leonard Lensink∗
∗ITEC B.V., †Eindhoven University of Technology

Email: d.d.manickam@student.tue.nl, {sajid.mohamed, leonard.lensink}@itecequipment.com, {v.jain,d.goswami}@tue.nl

Abstract—With the growing demand for semiconductor prod-
ucts, the semiconductor manufacturing industries are trying to
increase their production capacities. Additional requirements and
constraints are also enforced on semiconductor manufacturing
equipment, particularly on robustness for visual inspections
and vision-based alignment. Deep neural networks (DNNs) are
prominently used for vision-based tasks to improve robustness.
The challenge, however, is that semiconductor manufacturing
industries still use brownfield systems and equipment with legacy
hardware and software. The legacy systems introduce challenging
requirements and constraints on the DNN deployment and the
traditional approach to inference optimization results in poor in-
ference performance. This paper presents a structured approach
to optimize the inference of DNNs for vision-based tasks for
industrial brownfield architectures with existing legacy hardware,
software, and the associated requirements and constraints. Four
directions in the machine learning operations (MLOps) pipeline
are explored in this approach - DNN architecture selection, DNN
model optimization, target deployment platform, and inference
engine - while adhering to the legacy systems’ requirements and
constraints. We present our approach using the case study from
the semiconductor manufacturing industry that deploys DNNs
for vision-based position detection in their legacy equipment.
The results of the optimized DNN deployment are compared
with a baseline implementation, and up to 44% improvement in
inference timing performance is achieved without compromising
on inference accuracy.

Index Terms—Deep Neural Networks, Legacy Systems, Infer-
ence Optimisation, Neural Compute Stick, Google Coral Accel-
erator, TensorFlow, TensorFlow Lite

I. INTRODUCTION

Vision-based algorithms play a major role in the growing
trend for automation [1], [2], enabling the extraction of valu-
able information from visual data. Vision-based algorithms are
used in various sectors like manufacturing [3], automotive [4],
medical [5], and agriculture [6]. The semiconductor manufac-
turing industry [7] relies heavily on vision-based algorithms
for monitoring, object detection, inspection, defect detection,
alignment, etc. These vision-based applications traditionally
use conventional image processing techniques [8] such as
template matching, pixel counting, or finding simple features
such as blobs, corners, and lines. For example, in [9], a
template matching algorithm is used for chip localization
in combination with image segmentation, blob analysis, and
the dominant orientation techniques. However, the advent
of deep neural networks (DNNs) has revolutionized vision
processing by offering enhanced robustness and accuracy [10],
and they are increasingly being adopted in the semiconductor
manufacturing industry [3], [11].

Fig. 1. Machine Learning Operations (MLOps) Pipeline

Semiconductor assembly equipment, such as die bonders
and pick-and-place machines, operates at high speeds with
a throughput of 72000 units per hour [12]. Vision-based
algorithms deployed in such assembly equipment must process
captured images quickly to meet this throughput requirement.
Adopting DNNs to improve the robustness and accuracy of
vision-based algorithms for high throughput assembly equip-
ment [11], thus, requires fast inference (in the range of a
few ms). There are a lot of approaches for designing vision-
based DNNs and deploying them [3]–[6]. Techniques are also
present for inference time optimization considering the DNN
model [13] and edge platforms [14].

A typical DNN deployment uses standard machine learning
operations (MLOps) pipeline [15], [16]. In the MLOps
pipeline (see Figure 1), the first step is to define the scope
of the project. Next, the data for the project is defined,
collected, and prepared for modeling. In the modeling step,
the architecture for training the model is designed, trained
and error analysis is performed. Once the model is ready, it is
deployed in production using a selected platform and inference
engine. Finally, the system is monitored for maintenance.

The challenge, here, is that the semiconductor manufac-
turing industry still uses brownfield systems and assembly
equipment with legacy hardware and software. Such legacy
systems impose their own set of constraints and requirements
and thereby limit the flexibility of DNN deployment and in-
ference optimization. Also, a typical MLOps pipeline does not
cater directly to legacy systems, and a customized inference

pipeline is necessary for DNN deployment in legacy systems.
The question we address in this paper is: How to optimize the
inference performance of a DNN deployment while satisfying
the application requirements and the constraints imposed by
the legacy systems?

Contributions: This paper proposes a structured approach
for optimizing the inference performance for vision-based
DNNs deployed on legacy systems with their own set of
constraints and requirements. The focus is on the modeling
and deployment of DNNs as per the MLOps pipeline shown
in Fig. 1. Four directions are explored - DNN architecture
selection, DNN model optimization, target deployment plat-
form, and inference engine. We present and validate our struc-
tured approach using a case study of a vision-based position
detection algorithm for semiconductor assembly equipment.
The approach starts with identifying and characterizing the
constraints of the legacy system. Based on these constraints
and requirements on the vision algorithm, a Kepner-Tregoe
(KT) decision analysis [17] using a weighted criteria matrix
is performed. The feasible choices for the case study are iden-
tified and the results are used in the KT decision analysis. The
choices considered for the case study include multiple DNN
model optimization techniques targeting Intel PC, Intel neural
compute stick and Google coral accelerator as the hardware
platforms, and using customized TensorFlow, TensorFlow Lite,
OpenVINO and custom OpenCV-based inference engines. Us-
ing these techniques, a design space exploration is performed
to obtain the best inference performance.

This paper is organized as follows. Section II describes
the legacy system under study, and details the constraints
and requirements imposed by the legacy system. Section III
presents the structured approach for optimizing the DNN
inference for a legacy system, based on its constraints and
requirements. Section IV discusses how DNN architecture,
DNN model optimization, target platform and inference engine
affect the inference speed of DNN on a given platform.
Section V presents the design space exploration of the chosen
optimization techniques and its experimentation results. In
Section VI, the results of the design space exploration are
discussed and the best optimization technique is concluded.
Finally, Section VII provides a conclusion for this paper.

II. MOTIVATION AND PROBLEM DESCRIPTION

A. Motivating case study: Semiconductor assembly equipment

The case study considered is vision-based position detection
of LED in ITEC’s ADAT3XF PiXelect mini-LED die bonder
(shown in Fig. 2). PiXelect enables manufacturing the next-
generation LED direct view displays. PiXelect is ITEC’s high-
speed high accuracy mini-LED bonding solution that can
handle the smallest LED sizes on the market. The objective of
the die bonder is to bond the LED to a substrate at high speed
(bonding 72000 units per hour) and high accuracy (standard
deviation of 3 µm). The accuracy refers to the accuracy of the
placement of LED on the desired position in the substrate.

Vision-based position detection algorithm is used to detect
both LED and substrate positions. For the scope of this paper,

Fig. 2. ITEC’s ADAT3-XF PiXelect bonder for high-speed high accuracy
mini-LED bonding.

Fig. 3. A representative LED showing predicted X, Y and R Values

only the LED position detection is considered. The traditional
LED position detection detects - (X, Y) position and rotational
angle R, as shown in Figure 3. X and Y values are used to
detect the LED position and the rotation angle R is used to
predict the rotation of the LED, all with respect to a fixed
frame reference. Traditional vision processing algorithms [18]
have poor position detection accuracy since the LEDs typically
have jagged or coarse edges and there may be artifacts present
in the captured LED images (e.g. defects). A DNN-based
position detection algorithm is considered for deployment to
improve the LED placement accuracy.

The challenge, however, is that the PiXelect uses legacy
camera systems for capturing the images and a legacy com-
puting platform for vision processing, which imposes require-
ments and constraints on the DNN deployment. Multiple appli-
cations are running on the shared legacy computing platform.
Increasing the load of the vision processing task on the shared
legacy platform will adversely affect the throughput of the
PiXelect equipment.

B. Constraints for DNN Deployment

The following are some of the constraints imposed by the
brownfield legacy system of PiXelect and the requirements on
the vision-based position detection algorithm design and de-
ployment. These constraints must be taken into account when
choosing a technique for modeling and deploying the DNN
model for the current case study. Similar to these constraints,
each brownfield system will have its own constraints which
must be considered while designing and deploying the DNNs.

1) Precision of each prediction - The Mean absolute error
(MAE) of X and Y values must not exceed 1 unit for
each prediction. Similarly, the MAE of R value must not
exceed 0.5 units for each prediction.

2) Operating system (OS) - The solution must support the
OS deployed in the legacy system.

3) Processor support - The solution must support the
legacy system’s processor architecture.

4) Physical space constraints - The interface and the
size of any hardware required for the solution must be
compatible with the legacy equipment.

5) Availability in the market - The solution must be easily
available in the market without any supply chain risks.

6) Power Requirement - Any hardware required for the
solution should draw minimal power since high power-
consuming devices might affect the stability of the
legacy system.

7) Latency - Latency requirements of the legacy platform
should be met.

8) Bandwidth - The hardware solution with the highest
number of operations per second is preferred as this will
improve the inference time.

9) Cost - Cost of the solution must be reasonable as this
will affect the PiXelect cost price.

10) Additional software - Software that needs to be in-
stalled in the legacy system should not affect other
processes or applications already running on the legacy
platform.

11) Ease of use - The solution which can be easily ex-
perimented is preferred as this reduces the development
time.

12) Availability of development support - The solution for
which online support is easily available is preferred as
this reduces the development time.

C. Problem Statement

The main aim of this paper is to achieve the maximum
inference speed for the given brownfield architecture being
employed in the machines using a structured approach. In
doing so, the constraints listed for the current architecture must
be taken into consideration. This structured approach can be
applied to any legacy system with adaptations and choices
based on the constraints and requirements imposed by the
brownfield architecture and legacy hardware and software.

The decision for which solution should be integrated with
the legacy system is made using Kepner-Tregoe decision
analysis [17] through a weighted criteria matrix using the con-
straints and requirements mentioned in II-B. The techniques
with the best scores are filtered and experimented on in the
chosen case study. Design space explorations are performed
to achieve the best inference time.

III. STRUCTURED APPROACH FOR DNN OPTIMIZATION

This section details the structured approach proposed for
optimizing the inference performance of the vision-based
DNN in legacy systems. The overall flow of the structured

Fig. 4. Structured approach for DNN inference optimization of legacy systems

approach focusing on the modeling and deployment of the
MLOps pipeline is shown in Figure 4.

The first step in this approach is to identify the requirements
and constraints imposed by the chosen legacy system’s hard-
ware and software. After defining the requirements, identify
the available and feasible DNN architectures, DNN model
optimization techniques, targeted deployment platforms, and
inference engines. These different techniques are then filtered
using KT decision analysis based on the defined requirements
and constraints. The KT decision analysis is performed using
a weighted criteria matrix where different techniques are
weighted with the requirements and constraints as parameters.
The optimization techniques with the best scores are chosen
and experimented.

Design space exploration is performed among the filtered
techniques and the results are compared with the baseline
implementation. Finally, the optimization pipeline giving the
best inference results is chosen for implementation in the
legacy system.

IV. DNN INFERENCE OPTIMIZATION

The four design aspects - DNN architecture, DNN model
optimization, target deployment platform, and inference engine
- which will influence the inference of DNN on a legacy
system are detailed in this section. Figure 5 shows different
alternatives under these aspects that can be opted for inference
optimization. The effect of choices made on DNN inference
is explained in the following subsections.

A. DNN Architecture Selection

The DNN architecture is a key design aspect that directly
influences inference time. The number of parameters and
the number of operations (multiplication and addition) affect
the inferencing of the DNN. Hence, choosing the correct
architecture for any given application is essential.

Table I shows the relation between the number of param-
eters, the number of math operations (multiplications and
additions), and the inference time for different commonly
used DNN architectures. The results are taken for ImageNet
Classification on the CPU core of a Pixel 1 Phone. From this
table, it is clear that the number of parameters and math-
ematical operations significantly varies over different DNN

Fig. 5. Design aspects for DNN inference optimization

TABLE I
INFERENCE TIME OF COMMON DNN ARCHITECTURES [19]

DNN Architecture No. of
Parameters

No. of
Mul-
Adds

Inference
Time

MobileNetV1 [20] 4.2M 575M 113ms

MobileNetV2 [21] 3.4M 300M 75ms

MobileNetV2 (1.4x) 6.9M 585M 143ms

NASNet-A [22] 5.3M 564M 183ms

MnasNet-A1 [19] 3.9M 312M 78ms

architectures and this further leads to substantially different
inference times.

B. Model Optimizations

The next level of optimization is to optimize the model
of DNN. There are many techniques, for example, prun-
ing, clustering, and quantization, which will optimize the
architecture of the model to speed up the inference time of
the network. Further, each technique can be employed using
different algorithms according to the use case. Some of the
model optimization techniques are shown in Figure 6.

These techniques have proved to reduce the inference time
in various literature. For example, in [23], various DNN
architectures have been pruned and tested in different hardware
platforms, such as CPU, GPU, and Jetson TK1. Each platform
has shown significant speed-ups depending on the architecture
used.

Similarly, using quantization, the network size was reduced
by 15-20 times with 4x-6x speed up in [24] for deployment
in mobile devices.

C. Target Inference Platforms

The next direction of optimization is in the hardware plat-
form in which the DNN model will be deployed for inference.
There are various hardware platforms for deploying DNN
such as CPU, GPU, VPU, ASIC, FPGA, etc., each having
its advantages and disadvantages, and compromising on speed
and energy. The hardware platforms available in the market
have features such as increased bandwidth, multiple cores,

Fig. 6. Various model optimization techniques

multiple multiplier units for parallelization, etc. Using these
features, the inference speed of the DNN can be improved.

The architecture of the inference platforms has an impact on
the inference speed of the DNN. The multi-core architecture
with enhanced cache in a CPU, parallelization in a GPU, ASIC
architecture of a TPU with directly connected arithmetic logic
units, and parallelizable vector processors in a VPU contribute
to the inferencing of a neural network.

In [25], a performance comparison of Neural compute stick
2 (NCS2) and Coral USB accelerator is done for network
architectures MobileNetV1 and InceptionV1. It is shown that
Coral USB accelerator has better performance in terms of
inference time per image compared to NCS2. However, there is
a trade-off for accuracy. For MobileNetV1, NCS2 provided an
accuracy of 73.7% while the Coral USB accelerator provided
an accuracy of 70.6%. Similarly, for InceptionV1, NCS2 gave
an accuracy of 69% while the Coral USB accelerator provided
an accuracy of 65.9%. This decrease in accuracy is due to the
quantization of INT8/UINT8 in the Coral USB accelerator,
which is also the reason for the increased performance.

Therefore, while choosing an inference platform, the trade-
off between speed and accuracy must be analyzed, and depend-
ing on the application requirements, an appropriate platform
can be used for inference. In this paper, platforms such as
CPU, VPU and TPU are experimented. However, due to
constraints imposed by the legacy system on the inference
platform II-B, GPUs and FPGA platforms are not evaluated.

D. Inference Engines

Inference in DNN is to use the trained model to make
predictions on new data. The method of compiling the
DNN model targeting the hardware platform considering the
scheduling [26], parallelism and pipelining [27] capabilities,
and deployment plays a major role in the resulting inference
time of the network.

There are different inference engines available in the market,
each of which uses a different technology to deploy the DNN
model as shown in Figure 7. For example, Neural magic
extensively makes use of caching in the CPU to improve the
speed of inference. These inference engines provide different

Fig. 7. Inference engines for DNN optimization

Fig. 8. Chosen optimization techniques for the use case

techniques for deployment, some specific to certain hardware
platforms and optimization techniques. For example, NCS1 re-
quires either OpenCV or OpenVINO inference engine, Google
edge TPU accelerator requires Edge TPU runtime and TFLite
requires TensorFlow Lite inference engine for inferencing.
Clearly, the choice of inference engine majorly depends on
the inference platform and the model optimization technique
chosen. Choosing the correct inference engine optimizes the
implementation of DNN and improves the inference speed.

V. DESIGN SPACE EXPLORATION AND OPTIMIZATION

Design space exploration on chosen techniques and their
results are discussed in this section. After KT decision analysis
on techniques listed in Figure 5, the filtered techniques under
each direction are shown in Figure 8.

A. Baseline Experimentation Results

The baseline implementation is done on an Intel CPU.
During the comparison of the optimization results with the
baseline results, two important criteria are taken into consid-
eration.

• Mean absolute error (MAE) between the predicted and
actual label values. MAE is calculated for a dataset
containing approximately 3700 images. It is calculated
using the following formula,

MAE(L,P)O =
1

n

n−1∑
i=0

| Li − Pi | (1)

where,

TABLE II
TENSORFLOW MOBILENETV2 BASELINE MODEL

Model Inference Engine MAE -
X and Y

MAE -
R

Inference
Time
(ms)

MobileNetV2 OpenCV 0.04485 0.0403 9.531

− L is the actual label value of the image
− P is the predicted value from the baseline TensorFlow

model
− o represents the output value - X, Y or R
− n is the number of samples (≈3700 images)
− i is the iteration counter

For the chosen use case, the MAE of X and Y values must
not exceed 1 unit for each prediction. Similarly, the MAE
of R value must not exceed 0.5 units for each prediction.

• Average inference time for 100 iterations. The inference
time here is the total time taken for copying the image
to device memory, performing inference, and returning
the output values. Since transferring the input and output
to and from the inference platform is significant and
different for each platform, this is also considered for
comparing the optimized inference performance.

The MAE for the baseline model is tabulated in Table II.
The average inference time for the baseline model is 9.531
ms. The inference timing of the baseline implementation is
taken as the reference inference time. Any further inference
timings after optimizations are compared and improved with
respect to reference inference time.

The results of the optimization techniques are presented
with respect to the inference platforms - CPU, VPU, and TPU.

B. Inference Optimizations for CPU Platform

First, we choose 8th Generation Intel i7 CPU for ex-
perimenting with the inference of the neural network. The
inference flow on the CPU is shown in Figures 9 and 10.

Fig. 9. Inference flow in the CPU using TensorFlow model optimization
toolkit

Fig. 10. Inference flow in the CPU using OpenVINO toolkit

1) TensorFlow Lite Base Model: The first optimization
performed on the CPU is converting the TensorFlow model
into the TFLite model. This optimization is done using
the TensorFlow model optimization toolkit. The MAE and
inference time of the TensorFlow Lite base model, when
inferred using the TensorFlow Lite inference engine, is shown
in Table III. The inference time is improved because while

TABLE III
TENSORFLOW LITE BASE MODEL ON CPU

Model
Optimization Inference Engine MAE -

X and Y
MAE -

R

Inference
Time
(ms)

TFLite Base TensorFlow Lite 0.04467 0.0393 5.265

Fig. 11. Inference timing - weight clustering on CPU using OpenCV and
TensorFlow Lite inference engine [where ‘C’ stands for cluster size]
converting a TensorFlow model into a TensorFlow Lite model,
graph optimizations such as constant folding and operation
fusing are done. In addition to the conversion optimizations,
the TFLite inference engine also has a static memory plan
and static execution plan which results in faster inference.

2) Weight Clustering: In weight clustering, instead of
storing unique values in the weight matrix, similar values are
grouped and replaced with the same centroid value using a
clustering algorithm. Then, the values in the actual weight
matrix are replaced with the centroid index which reduces the
memory footprint of the model.

Weight clustering is performed using the TensorFlow model
optimization toolkit. Weight clustered model can be inferred
using both OpenCV and TensorFlow Lite inference engines.
Hence, the results of both the models for different cluster sizes
are shown in Figure 11. Cluster size defines the number of
weights grouped together for finding the centroid value. In
Figure 11, the red star indicates the baseline inference time of
TensorFlow and TensorFlow Lite models, while the blue star
indicates the inference time of clustered models. In Figure 12,
the red star indicates the baseline MAE values. It can be seen
from Figure 12 that the MAE values are within the acceptable
error range till cluster size 16. Reducing the cluster size below
16 gives higher error values.

3) Weight Pruning: After the training of DNNs, there will
be a few nodes whose weights do not make any significant
change to the final output. These nodes can be removed and
the method of cutting down low-impact neurons is called
pruning. Weight Pruning is performed using the TensorFlow
model optimization toolkit. It is performed by defining the

Fig. 12. MAE - weight clustering on CPU using OpenCV and TensorFlow
Lite inference engine [where ‘C’ stands for cluster size]

sparsity value which defines the ratio of weights removed
when compared to the original matrix. The MAE and inference
time of the weight pruning model, when inferred using the
TensorFlow Lite inference engine, is shown in Table IV.

TABLE IV
WEIGHT PRUNING ON CPU

Model
Optimization Inference Engine

MAE
- X

and Y

MAE
- R

Inference
Time
(ms)

0.50 Sparsity TensorFlow Lite 0.04407 0.03399 5.263

0.80 Sparsity TensorFlow Lite 0.05067 0.03685 5.265

4) Post-Training Quantization: Quantization is the process
of reducing the precision of weights and biases in the network.
The floating points used in the networks can be reduced, for
example from 32-bit to 16-bit or 8-bit which will reduce
the network size. Quantization is performed using the Intel
OpenVINO toolkit. The results of the quantized model, when
inferred using OpenCV and Intel OpenVINO inference engine,
are shown in Figure 13.

Fig. 13. Inference timing - quantization on CPU using OpenCV and
OpenVINO inference engine [where ‘F’ stands for float value]

C. Inference Optimizations for VPU Platform

The next platform chosen for inferencing is the VPU (Vision
Processing Unit). Here, the VPU used is the Intel neural
compute stick 1(NCS1). The neural network model optimized
using the Intel OpenVINO toolkit will be inferred using
the OpenVINO inference engine on the NCS1. Since the

TABLE V
QUANTIZATION ON VPU AND TPU

Model
Optimiza-

tion

Inference
Plat-
form

Inference Engine
MAE
- X

and Y

MAE
- R

Inference
Time
(ms)

OpenVINO
float16 VPU Intel OpenVINO 0.04485 0.04018 28.965

TFLite
uint8 TPU

TensorFlow Lite
and Edge TPU

Runtime
0.06024 0.04567 7.115

OpenVINO toolkit does not support weight clustering and
weight pruning, only post-training quantization is performed
on NCS1.
Post-Training Quantization: Since only float16 models are
supported on VPU, only the float16 model is tested on the
NCS1. The MAE and inference timing of a float16 model
inferred on the Neural compute stick 1 using the Intel Open-
VINO toolkit is shown in Table V.
D. Inference Optimizations for TPU Platform

The final platform chosen for inferencing is the TPU
(Tensor Processing Unit). In this paper, the TPU used is the
Google coral USB accelerator, which is a Google edge TPU
accelerator. The neural network model optimized using the
TensorFlow model optimization toolkit will be inferred using
the TensorFlow Lite inference engine in combination with
Edge TPU runtime on the Google coral USB accelerator.
Post-Training Quantization: Only a full integer model in
TFLite format is supported for inferencing on a Google edge
TPU accelerator. This quantization is done using the post-
training quantization available with the TensorFlow model
optimization toolkit. Inference on the Google coral USB
accelerator is done using the TensorFlow Lite inference engine
and Edge TPU runtime. While the TensorFlow Lite inference
engine is used for reading the network and performing in-
ference, Edge TPU runtime is used for interfacing with the
Google edge TPU accelerator.

The MAE and inference timing of a full integer uint8
model inferred on the Google coral USB accelerator using
the TensorFlow Lite inference engine and Edge TPU runtime
are detailed in Table V.

VI. DISCUSSION

Fig. 14. Inference timing of the best models in each optimization technique

Models with the lowest inference timing from each opti-
mization technique are chosen for analysis to compare the
inference timing of different optimization techniques. The
chosen model is shown in Figure 14.

From Figure 14, it can be seen that the inference of
the TFLite base model, TFLite clustered model, and TFLite
pruned model on the CPU with the TensorFlow Lite inference
engine has given the lowest inference time of 5.265 ms. The
main reason for TFLite models to have faster inference is that
the TFLite models are stored as FlatBuffers. It can be accessed
directly without parsing, reducing the time taken for inference.

The difference in inference timing for the first inferred
image and the average inference time between the baseline
model and the optimized model can be seen in Figure 15.

Fig. 15. Baseline model vs. optimized model inference time

However, the model optimization techniques such as weight
clustering and weight pruning do not improve the inferencing
of the model. Though these models modify the architecture
and reduce the size and memory footprint of the network, it
does not highly impact the inferencing speed of the neural
network model. In weight clustering, unique weight values
are replaced by centroid values. Similarly, in weight pruning,
low-magnitude weight values are replaced with zero. In these
techniques, the number of operations to be carried out remains
the same. Hence, the inferencing time is not improved with
these optimization techniques. Different kinds of clustering
and pruning algorithms can be experimented with to see if
they improve the inference speed of the network.

With regard to quantization, the difference in inference time
between the float32 and float16 models is not significant. In
quantization, similar to the above-mentioned techniques, the
network size is reduced by changing the precision of the
parameters of the network and not the number of operations.
However, quantization of the model further to uint8 or int8
might improve the inference speed as this reduces the compu-
tation time when compared to floating point numbers.

The next is inferencing on the VPU - Neural compute stick
platform. It can be seen that the inference time on the NCS1 is
28.965 ms which is higher than the base model time of 9.531
ms. This increased time is mainly due to the re-connection of

the NCS1 for each inference. The time to connect the NCS1
to the PC, the time to transfer the image to the NCS1, the time
to perform inference, and the time to transfer the output back
to the PC add up to give this increased time. Hence, NCS1 is
not a suitable inference platform for the given use case. An
alternative is to experiment with Neural compute stick 2 which
Intel claims to be 8 times faster than the NCS1.

Finally, we discuss the Google coral USB accelerator plat-
form. The inference of the TFLite model on the Coral USB
accelerator is 7.115 ms which is higher than the inference time
of the TFLite model on the CPU. Coral USB accelerator has
a USB-C interface connected to the PC’s USB-B port through
a connector cable. The transfer of the input image and the
output through this wire length increases the inference time
of the network. An alternative is to experiment with Coral
accelerators with the PCIe interface. This will eliminate the
delay due to wire transfer as it is directly interfaced with the
PC.

In general, it can be seen from this study that the inference
engine and how the model is mapped to the inference platform
play a major role in determining the inference speed of the
neural networks. Each inference platform requires a particular
model format which depends on the inference engine being
employed. Hence, choosing the correct inference engine and
a suitable model format for an inference platform will help
achieve good inference performance.

VII. CONCLUSION

This paper proposes a structured inference optimization
approach for vision-based deep neural network (DNN) design
and deployment on legacy systems. Four aspects of a machine
learning operations (MLOps) pipeline are explicitly considered
- DNN architecture selection, DNN model optimization, target
deployment platform and inference engine. The structured
approach for DNN design and deployment is explained using
a case study from the semiconductor manufacturing industry
using ITEC’s PiXelect mini-LED bonder legacy system.

The structured approach starts with identifying and charac-
terizing the constraints of the legacy system and requirements
on the vision algorithm. A Kepner-Tregoe (KT) decision
analysis using a weighted criteria matrix is performed for
identifying the inference optimization techniques that can be
integrated with the legacy system using the four aspects of the
MLOps pipeline. Design space exploration is also performed
for the identified inference optimization techniques. Using
our approach, the shortest inference time was achieved by
deploying the TFLite DNN model on the CPU using the Ten-
sorFlow Lite inference engine. The inference time achieved is
≈ 44% faster than the baseline implementation. However, the
inference time still needs improvement to achieve the required
throughput of the equipment and will be investigated in future
work. Future work also involves studying the impact of other
aspects in the MLOps pipeline for inference optimization.

ACKNOWLEDGMENT

This work was supported by ECSEL Joint Undertak-
ing in the H2020 project IMOCO4.E [1], grant agreement
No.101007311.

REFERENCES

[1] S. Mohamed et al., “The IMOCO4.E reference framework for intelligent
motion control systems,” in ETFA, 2023.

[2] M. Čech, A.-J. Beltman, and K. Ozols, “Digital twins and AI in smart
motion control applications,” in ETFA, 2022.

[3] T. Schlosser, M. Friedrich et al., “Improving automated visual fault
inspection for semiconductor manufacturing using a hybrid multistage
system of deep neural networks,” Journal of Intelligent Manufacturing,
vol. 33, no. 4, pp. 1099–1123, 2022.

[4] D. Vajak, M. Vranješ et al., “Recent advances in vision-based lane detec-
tion solutions for automotive applications,” in International Symposium
ELMAR. IEEE, 2019, pp. 45–50.

[5] A. Esteva, K. Chou et al., “Deep learning-enabled medical computer
vision,” NPJ digital medicine, vol. 4, no. 1, p. 5, 2021.

[6] T. R. Gadekallu, D. S. Rajput et al., “A novel pca–whale optimization-
based deep neural network model for classification of tomato plant
diseases using gpu,” Journal of Real-Time Image Processing, vol. 18,
pp. 1383–1396, 2021.

[7] H. Geng, Semiconductor manufacturing handbook. McGraw-Hill
Education, 2018.

[8] C. Jugade, D. Hartgers et al., “An evaluation framework for vision-in-
the-loop motion control systems,” in ETFA, 2022.

[9] F. Zhong, S. He, and J. Yi, “A fast template matching method for led chip
localization,” in MATEC web of conferences, vol. 34. EDP Sciences,
2015, p. 04002.

[10] S. De, Y. Huang et al., “Hardware- and situation-aware sensing for robust
closed-loop control systems,” in DATE, 2021.

[11] V. Jain, S. Mohamed et al., “Vision-based multi-size object positioning,”
in DSD, 2023.

[12] G. van der Veen, J. Stokkermans et al., “How learning control supports
industry 4.0 in semiconductor manufacturing,” in ASPE Spring Topical
Meeting on Design and Control of Precision Mechatronic Systems, 2020.

[13] B. Taylor, V. S. Marco et al., “Adaptive deep learning model selection
on embedded systems,” ACM SIGPLAN Notices, 2018.

[14] X. Xu, Y. Ding et al., “Scaling for edge inference of deep neural
networks,” Nature Electronics, vol. 1, no. 4, pp. 216–222, 2018.

[15] D. Baylor, E. Breck et al., “Tfx: A tensorflow-based production-scale
machine learning platform,” in KDD, 2017.

[16] M. Zaharia, A. Chen et al., “Accelerating the machine learning lifecycle
with mlflow,” IEEE Data Eng. Bull., vol. 41, no. 4, pp. 39–45, 2018.

[17] J. S. Parker and J. D. Moseley, “Kepner-tregoe decision analysis as
a tool to aid route selection. part 1,” Organic Process Research &
Development, vol. 12, no. 6, pp. 1041–1043, 2008.

[18] C. Jugade, D. Hartgers et al., “Improved positioning precision using
a multi-rate multi-sensor in industrial motion control systems,” in
European Control Conference (ECC), 2023.

[19] M. Tan, B. Chen et al., “Mnasnet: Platform-aware neural architecture
search for mobile,” in CVPR, 2019.

[20] A. G. Howard, M. Zhu et al., “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[21] M. Sandler, A. Howard et al., “Mobilenetv2: Inverted residuals and
linear bottlenecks,” in CVPR, 2018.

[22] B. Zoph, V. Vasudevan et al., “Learning transferable architectures for
scalable image recognition,” in CVPR, 2018.

[23] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[24] J. Wu, C. Leng et al., “Quantized convolutional neural networks for
mobile devices,” in CVPR, 2016.

[25] L. A. Libutti, F. D. Igual et al., “Benchmarking performance and power
of USB accelerators for inference with MLPerf,” in 2nd Workshop
Accelerated Mach. Learn.(AccML), 2020, pp. 1–15.

[26] S. Mohamed, Multiprocessor Image-Based Control: Model-Driven Op-
timisation. Eindhoven University of Technology, 2022.

[27] S. Mohamed, D. Goswami et al., “Optimising multiprocessor image-
based control through pipelining and parallelism,” IEEE Access, 2021.

